Skip to main content

Fundamental Group of Sextics of Torus Type

  • Chapter
Trends in Singularities

Part of the book series: Trends in Mathematics ((TM))

Abstract

We show that the fundamental group of the complement of any irreducible tame torus sextics in ℙ2 is isomorphic to ℤ2 * ℤ3 except one class. The exceptional class has the configuration of the singularities {C 3,9, 3A2} and the fundamental group is bigger than ℤ2 * ℤ3. In fact, the Alexander polynomial is given by (t 2t+1)2. For the proof, we first reduce the assertion to maximal curves and then we compute the fundamental groups for maximal tame torus curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Artal and J. Carmona, Zariski pairs, fundamental groups and Alexander polynomials, J. Math. Soc. Japan, 50 (1998), 521–543.

    Article  MathSciNet  Google Scholar 

  2. J. I. Cogolludo, Fundamental group for some cuspidal curves, Bull. London Math. Soc., 31 (1999), 136–142.

    Article  MathSciNet  MATH  Google Scholar 

  3. R.H. Crowell and R.H. Fox, Introduction to Knot Theory, Ginn and Co. (1963).

    Google Scholar 

  4. A. I. Degtyarev, Alexander polynomial of a curve of degree six, J. Knot Theory and its Ramifications, 3 (1994), 439–454.

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Fadell and J. van Buskirk, The Braid group of E 2 and S 2, Duke Math. J., 29 (1962), 243–258.

    MATH  Google Scholar 

  6. A. Libgober, Alexander polynomial of plane algebraic curves and cyclic multiple planes, Duke Math. J., 49 (1982), 833–851.

    Article  MathSciNet  MATH  Google Scholar 

  7. W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Dover Publications, Inc., New York (1976).

    MATH  Google Scholar 

  8. M. Oka, On the fundamental group of the complement of a reducible curve in P 2, J. London Math. Soc., 2 (1976), 239–252.

    Article  MathSciNet  Google Scholar 

  9. M. Oka, Geometry of plane curves via toroidal resolution, in Algebraic Geometry and Singularities, ed. by A. Campilo, Progress in Math. 134, 1996, 95–118.

    MathSciNet  Google Scholar 

  10. M. Oka, Flex curves and their applications, Geometriae Dedicata, 75 (1999), 67–100.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Oka, Geometry of cuspidal sextics and their dual curves, in Advanced Studies in Pure Math. vol. 29, 245–277, 2000, Singularities and arrangements, Sapporo-Tokyo 1998.

    Google Scholar 

  12. D.T. Pho, Classification of singularities on torus curves of type (2, 3), Kodai Math. J., 24 (2001), 259–284.

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Tokunaga, Galois covers for S4 and A4 and their applications, Preprint 2000.

    Google Scholar 

  14. A. Muhammed Uludag, Groupes fondamentaux d’une famille de courbes rationnelles cuspidales, Doctor thesis at University of Grenoble I (2000).

    Google Scholar 

  15. O. Zariski, On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math.,51 (1929), 305–328.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Oka, M., Pho, D.T. (2002). Fundamental Group of Sextics of Torus Type. In: Libgober, A., Tibăr, M. (eds) Trends in Singularities. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8161-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8161-6_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9461-6

  • Online ISBN: 978-3-0348-8161-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics