Skip to main content

Eigenvalues for the Monodromy of the Milnor Fibers of Arrangements

  • Chapter
Trends in Singularities

Part of the book series: Trends in Mathematics ((TM))

Abstract

We describe upper bounds for the orders of the eigenvalues of the monodromy of Milnor fibers of arrangements given in terms of combinatorics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. A’Campo, La fonction zêta d’une monodromie,Comment. Math. Helv., 50 (1975), 233–248.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Dedham, The Orlik Solomon complex and Milnor fiber homology, to appear in Topology and its Applications, 2001.

    Google Scholar 

  3. P. Deligne, Equations différentielles à points singuliers réguliers, Lecture Notes in Math., 163 (1970), 1–133.

    Article  MathSciNet  Google Scholar 

  4. A. Dimca, Singularities and topology of hypersurfaces, Universitext. Springer-Verlag, New York, 1992.

    Book  Google Scholar 

  5. D. Cohen, A. Suciu, Homology of iterated semidirect products of free groups, J. Pure Appl. Algebra, 126 (1998), no. 1–3, 87–120.

    Google Scholar 

  6. D. Cohen, P. Orlik, Some cyclic covers of complements of arrangements, math.AG/0001167.

    Google Scholar 

  7. H. Esnault, V. Schechtman, A. Varchenko, Cohomology of the local systems on complements to hyperplanes, Inventiones Math., 109 (1992), 557–561.

    Article  MATH  Google Scholar 

  8. R. Godement, Topologie algébrique et théorie des faisceaux, Actualités Sci. Ind. No. 1252. Publ. Math. Univ. Strasbourg. No. 13 Hermann, Paris 1958.

    Google Scholar 

  9. M. Goresky and R. MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 14. Springer-Verlag, Berlin, 1988.

    Google Scholar 

  10. A. Libgober, Alexander polynomial of plane algebraic curves and cyclic multiple planes, Duke Math. J., 49 (1982), no. 4, 833–851.

    MathSciNet  MATH  Google Scholar 

  11. A. Libgober, Alexander invariants of plane algebraic curves, Proc. Symp. Pure. Math., 40, part 2 (1983), 135–143.

    Article  MathSciNet  Google Scholar 

  12. A. Libgober, Homotopy groups of the complements to singular hypersurfaces II, Annals of Math., 139 (1994), 117–144.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Libgober, The topology of the complements to hypersurfaces and non vanishing of twisted deRham cohomology, Singularities and complex geometry, AMS/IP Studies in Advances Mathematics, 5 (1997), 116–130.

    MathSciNet  Google Scholar 

  14. A. Libgober, M. Tibár, Homotopy groups of the complements and non-isolated singularities, in preparation.

    Google Scholar 

  15. A. Libgober, S. Yuzvinsky, Cohomology of local systems, Arrangements—Tokyo 1998, 169–184, Adv. Stud. Pure Math., 27, Kinokuniya, Tokyo, 2000.

    Google Scholar 

  16. F. Loeser, M. Vaquié, Le polynôme de Alexander d’une courbe plane projective, Topology, 29 (1990), 163–173.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Milnor, Infinite cyclic coverings, 1968 Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967) pp. 115–133 Prindle, Weber & Schmidt, Boston, Mass.

    Google Scholar 

  18. J. Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61 Princeton University Press, Princeton, N.J.

    Google Scholar 

  19. M. Nori, Zariski’s conjecture and related problems,Ann. Sci. École Norm. Sup., 16 (1983), no. 2, 305–344.

    MathSciNet  MATH  Google Scholar 

  20. V. Schechtman, H. Terao, A. Varchenko, Local systems over complements of hyperplanes and the Kac-Kazhdan conditions for singular vectors, J. Pure Appl. Algebra, 100 (1995), no. 1–3, 93–102.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Steenbrink, The spectrum of hypersurface singularities, Actes du Colloque de Théorie de Hodge (Luminy, 1987). Astérisque No. 179–180 (1989), 11, 163–184.

    MathSciNet  Google Scholar 

  22. R. Thom, M. Sebastiani, Un résultat sur la monodromie, Inventiones Math., 13 (1971), 90–96.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Libgober, A. (2002). Eigenvalues for the Monodromy of the Milnor Fibers of Arrangements. In: Libgober, A., Tibăr, M. (eds) Trends in Singularities. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8161-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8161-6_6

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9461-6

  • Online ISBN: 978-3-0348-8161-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics