Skip to main content

Quinolones for the treatment of skin, soft tissue, bone and prosthetic joint infections

  • Chapter
  • First Online:
Fluoroquinolone Antibiotics

Part of the book series: Milestones in Drug Therapy ((MDT))

  • 500 Accesses

Abstract

The antimicrobial spectrum of activity of the early quinolones (i.e., norfloxacin, ofloxacin, ciprofloxacin) favor potency against Gram-negative microorganisms [1, 2]. The newer agents (levofloxacin, gatifloxacin, moxifloxacin) have expanded activity against the Gram-positive microorganisms [3, 4] and some of these newer agents which are currently available or in clinical trial (moxifloxacin, gatifloxacin, garenoxacin) also demonstrate excellent in vitro activity against the Gram-negative, Gram-positive, anaerobic, and atypical microorganisms [5-7]. Ciprofloxacin and levofloxacin have only moderate activity against the group A streptococci, with MIC90s of 0.5 pg/ml, however, reports of resistance to these agents have been rare [8, 9]. In a nationwide multicenter susceptibility surveillance study in Spain [10], 70 (3.4%) of 2,039 isolates of Streptococcus pyogenes had a ciprofloxacin MIC >_ 4 pg/ml. These microorganisms were found to be equally distributed between children and adults [10]. The early investigations with the then new fluoroquinolones, particularly ciprofloxacin, demonstrated in vitro activity against both methicillinsusceptible Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA), although the activity was marginal with MIC90s of 0.5 pg/ml [11, 12]. A single mutation in the primary target would increase the MIC of ciprofloxacin four-to 16-fold, a level of resistance at or above peak drug concentrations achievable in serum, providing an opportunity for such first-step mutants to survive and emerge when a patient was exposed to fluoroquinolones [13]. Fluoroquinolone resistance in MRSA and the coagulase-negative staphylococci is now >50% worldwide [14-16]. Fluoroquinolone resistance in methicillin-susceptible staphylococci vary from <5% to 22%, depending on the location of the study [17, 18]. An international study with isolates provided from countries in Europe, Asia, and Latin America demonstrated ciprofloxacin resistant rates in MRSA, MSSA, methicillin-resistant and -susceptible coagulase-negative staphylococci of 90%, 21%, 50% and 22% respectively [15]. Susceptibility testing was carried out

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Owens RC Jr, Ambrose PG (2000) Clinical use of the fluoroquinolones. Med Clin North Am 84: 1447–1469

    CAS  PubMed  Google Scholar 

  2. Bongaerts GP, Hoogkamp-Korstanje JA (1993) In vitro activities of BAY Y3I 18, ciprofloxacin, ofloxacin, and fleroxacin against Gram-positive and Gram-negative pathogens from respiratory tract and soft tissue infections. Anttmicrob Agents Chemother 37: 2017–2019

    CAS  Google Scholar 

  3. Bauernfeind A (1997) Comparison of the antibacterial activities of the quinolones Bay 12–8039, gatifloxacin (AM 1155), trovafloxacin, clinafloxacin, levofloxacin, and ciprofloxacin. J Antimicrob Chemother 40: 639–651

    CAS  PubMed  Google Scholar 

  4. Critchley IA, Sahm DF, Thornsberry C, Blosser-Middleton RS, Jones ME, Karlowsky JA (2002) Antimicrobial susceptibilities of Streptococcus pyogenes isolated from respiratory and skin and soft tissue infections: United States LIBRA surveillance data from 1999. Diagn Microbiol Infect Dis 42: 129–135

    CAS  PubMed  Google Scholar 

  5. Goldstein EJ, Citron DM, Hudspeth M, Hunt Gerardo S, Merriam CV (1997) In vitro activity of Bay 12–8039, a new 8-methoxyquinolone, compared to the activities of 11 other oral antimicrobial agents against 390 aerobic and anaerobic bacteria isolated from human and animal bite wound skin and soft tissue infections in humans. Antimicrob Agents Chemother 41: 1552–1557

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Goldstein EJ, Citron DM, Merriam CV, Tyrrell K, Warren Y (1999) Activity of gatifloxacin corn-pared to those of five other quinolones versus aerobic and anaerobic isolates for skin and soft tissue samples of human and animal bite wound infections. Antimicrob Agents Chemother 43: 1475–1479

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Goldstein EJ, Citron DM, Merriam CV, Warren YA, Tyrrell KL, Fernandez H (2002) In vitro activities of the des-fluoro (6) quinolone BMS — 284756 against aerobic and anaerobic pathogens isolated from skin and soft tissue animal and human bite wound infections. Antimicrob Agents Chemother 46: 866–870

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Barry AL, Fuchs PC, Brown SD (2001) In vitro activities of three nonfluorinated quinolones against representative bacterial isolates. Antimicrob Agents Chemother 45: 1923–1927

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yan SS, Fox ML, Holland SM, Stock F, Gill VJ, Fedorko DP (2000) Resistance to multiple fluoroquinolones in a clinical isolate of Streptococcus pyogenes: identification of gyrA and parC and specification of point mutations associated with resistance. Antimicrob Agents Chemother 44: 3196–3198

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Perez-Trallero E, Fernandez-Mazarrasa C, Garcia-Rey C, Souza E, Aguilar L, Garcia-de-Lomas J, Baquero F (2001) Antimicrobial susceptibilities of 1,684 Streptococcus pneumoniae and 2,039 Streptococcus pyogenes isolates and their ecological relationships: results of a 1-year (1998–1999) multicenter surveillance study in Spain. Antimicrob Agents Chemother 45: 3334–3340

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Barry AL, Jones RN (1987) In vitro activity of ciprofloxacin against Gram-positive cocci. Am J Med 82 (Suppl 4A): 27–32

    CAS  PubMed  Google Scholar 

  12. Smith SM (1986) In vitro comparison of A-56619, A-56620, amifloxacin, ciprofloxacin, enoxacin, norfloxacin, and ofloxacin against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 29: 325–326

    CAS  PubMed  Google Scholar 

  13. Hooper DC (2001) Emerging mechanisms of fluoroquinolone resistance. Emerg Infect Dis 7: 337–341

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Acar JF, Goldstein FW (1997) Trends in bacterial resistance to fluoroquinolones. Clin Infect Dis 24 Suppl 1: S67–S73

    CAS  PubMed  Google Scholar 

  15. Santos S, Mato R, de Lencastre H, Tamasz A (2000) Patterns of multidrug resistance among methicillin-resistant hospital isolates of coagulase-positive and coagulase-negative staphylococci collected in the international multicenter study RESIST in 1997 and 1998. Microb Drug Resist 6: 199–211

    Google Scholar 

  16. Tacconelli E, Tumbarello M, Donati KG, Bettio M, Spanu T, Leone F, Sechi LA, Zanetti S, Fadda G, Cauda R (2001) Glycopeptide resistance among coagulase-negative staphylococci that cause bacteremia: epidemiological and clinical findings from a case-control study. Clin Infect Dis 33: 1628–1635

    CAS  PubMed  Google Scholar 

  17. McCloskey L, Moore T, Niconovich N, Donald B, Broskey J, Jakielaszek C, Rittenhouse S, Coleman K (2000) In vitro activity of gemifloxacin against a broad range of recent clinical isolates from the USA. JAntimicrob Chemother 45 (Suppl 1): 13–21

    CAS  Google Scholar 

  18. Monsen T, Ronnmark M, Olofsson C, Wistrom J (1999) Antibiotic susceptibility of staphylococci isolated in blood cultures in relation to antibiotic consumption in hospital wards. Scand J Infect Dis 31: 399–404

    CAS  PubMed  Google Scholar 

  19. Greenberg RN, Kennedy DJ, Reilly PM, Luppen KL, Weinandt WJ, Bollinger MR, Aguirre F, Kodesch F, Saeed AM. 1987. Treatment of bone, joint, and soft-tissue infections with oral ciprofloxacin. Antimicrob Agents Chemother 31: 151–155

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mulligan ME, Ruane PJ, Johnston L, Wong P, Wheelock JP, MacDonald K, Reinhardt JF, Johnson CC, Statner B, Blomquist I, McCarthy J, O’Brien W, Gardner S, Hammer L, Citron DM (1987) Ciprofloxacin for eradication of methicillin-resistant Staphylococcus aureus colonization. Am J Med 82: 215–219

    CAS  PubMed  Google Scholar 

  21. Piercy EA, Barbaro D, Luby JP, Mackowiak PA (1989) Ciprofloxacin for methicillin-resistant Staphylococcus aureus infections. Antimicrob Agents Chemother 33: 128–130

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Peterson LR, Quick JN, Jensen B, Homann S, Johnson S, Tenquist J, Shanholtzer C, Petzel RA, Sinn L, Gerding DN (1990) Emergence of ciprofloxacin resistance in nosocomial methicillinresistant Staphylococcus aureus isolates. Resistance during ciprofloxacin plus rifampin therapy for methicillin-resistant S. aureus colonization. Arch Intern Med 150: 2151–2155

    CAS  PubMed  Google Scholar 

  23. Blumberg HM, Rimland D, Carroll DJ, Terry P, Wachsmuth IK (1991) Rapid development of ciprofloxacin resistance in methicillin-susceptible and -resistant Staphylococcus aureus. J Infect Dis 163: 1279–1285

    CAS  PubMed  Google Scholar 

  24. Bergeron MG (1989) The pharmacokinetics and tissue penetration of fluoroquinolones. Clin Invest Med 12: 20–27

    CAS  PubMed  Google Scholar 

  25. MacGregor RR, Graziani AL (1997) Oral administration of antibiotics: a rational alternative to the parenteral route. Clin Infect Dis 24: 457–467

    CAS  PubMed  Google Scholar 

  26. Blondeau JM (1999) Expanded activity and utility of the new fluoroquinolones: a review. Clin Ther 21: 3–40

    CAS  PubMed  Google Scholar 

  27. Mueller M, Brunner M, Hollenstein U, Joukhadar C, Schmid R, Minar E, Ehringer H, Eichler HG (1999) Penetration of ciprofloxacin into the interstitial space of inflamed foot lesions in non-insulin dependent diabetes mellitus patients. Antimicrob Agents Chemother 43: 2056–2058

    Google Scholar 

  28. Tarshis GA, Miskin BM, Jones TM, Champlain J, Wingert KJ, Breen JD, Brown MJ (2001) Once-daily oral gatifloxacin versus oral levofloxacin in treatment of uncomplicated skin and soft tissue infections: double-blind, multicentre, randomized study. Antimicrob Agents Chemother 45: 2358–2362

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu HH, Bolash NK, McAnany ME, Lynch RA (1995) Susceptibility of bacterial isolates from complicated skin and skin structure infections to cefazolin, imipenem-cilastatin, ciprofloxacin and ofloxacin. Drugs 49 (Suppl 2): 215–218

    PubMed  Google Scholar 

  30. Ramirez-Ronda CH, Saavedra S, Rivera-Vazquez CR (1987) Comparative, double-blind study of oral ciprofloxacin and intravenous cefotaxime in skin and skin structure infections. Am J Med 82 (suppl 4A): 220–223

    CAS  PubMed  Google Scholar 

  31. Perez-Ruvalcaba JA, Quintero-Perez NP, Morales-Reyes JJ, Huitron-Ramirez JA, RodriguezChagollan JJ, Rodriguez-Noriega E (1987) Double-blind comparison of ciprofloxacin with cefotaxime in the treatment of skin and skin structure infections. Am J Med 82 (suppl 4A): 242–246

    CAS  PubMed  Google Scholar 

  32. Gentry LO, Ramirez-Ronda CH, Rodriguez-Noriega E, Thadepalli H, del Rosal PL, Ramirez C (1999) Oral ciprofloxacin versus parenteral cefotaxime in the treatment of difficult skin and soft tissue structure infections. A mulit-centre trial. Arch Intern Med 149: 2579–2583

    Google Scholar 

  33. Gentry LO, Rodriguez-Gomez G, Zeluff BJ, Khoshdel A, Price M (1989) A comparative evaluation of oral ofloxacin versus intravenous cefotaxime therapy for serious skin and skin structure infections. Am J Med 87 (suppl 6C) 57–60

    Google Scholar 

  34. Lipsky BA, Baker PD, Landon GC, Fernau R (1997) Antibiotic Therapy for Diabetic Foot infections: comparison of two parenteral-to-oral regimens. Clin Infect Dis 24: 643–648

    CAS  PubMed  Google Scholar 

  35. Nichols RL, Smith JW, Gentry LO, Gezon J, Campbell T, Sokal P, Williams RR (1998) Multicentre, randomized study comparing levofloxacin and ciprofloxacin for uncomplicated skin and skin structure infections. South Med J 90: 1193–1200

    Google Scholar 

  36. Nicodemo AC, Robledo JA, Jasovich A, Neto W (1998) A multicentre, double-blind, randomized study comparing the efficacy and safety of oral levofloxacin versus ciprofloxacin in the treatment of uncomplicated skin and skin structure infections. Mt J Clin Pract 52: 69–74

    CAS  Google Scholar 

  37. Graham DR, Talan DA, Nichols RL, Lucsti C, Corrado N, Morgan N, Fowler CL (2002) Once-daily, high-dose levofloxacin versus ticarcillin-clavulanate alone or followed by amoxicillinclavulanate for complicated skin and skin-structure infections. A randomized open-labeled trial. Clin Infect Dis 35: 381–389

    CAS  PubMed  Google Scholar 

  38. Parish LC, Routh HB, Miskin B, Fidelholtz J, Werschler P, Heyd A, Haverstock D, Church D (2000) Moxifloxacin versus cephalexin in treatment of uncomplicated skin infections. Int J Clin Pract 54: 497–503

    CAS  PubMed  Google Scholar 

  39. Karchmer AW (1999) Fluoroquinolone treatment of skin and skin structure infections. Drugs 58 (suppl 2): 82–84

    CAS  PubMed  Google Scholar 

  40. Rissing JP (1997) Antimicrobial Therapy for chronic osteomyelitis in adults: role of the quinolones. Clin Infect Dis 25: 1327–1333

    CAS  PubMed  Google Scholar 

  41. Haas DW, McAndrew MP (1996) Bacterial osteomyelitis in adults: evolving considerations in diagnosis and treatment. Am J Med 101: 550–561

    CAS  PubMed  Google Scholar 

  42. Cierny G, Mader JT (1984) Adult chronic osteomyelitis. Orthopedics 7: 1557–1564

    CAS  PubMed  Google Scholar 

  43. Cole WG (1984) Acute osteomyelitis overview. Orthopedics 7: 1553–1556

    CAS  PubMed  Google Scholar 

  44. Lew DP, Waldvogel FA (1995) Quinolones and osteomyelitis: state-of-the-art. Drugs 49 (suppl 2): 100–111

    CAS  PubMed  Google Scholar 

  45. Lew DP, Waldvogel FA (1999) XXX Use of quinolones in osteomyelitis and infected orthopedic prosthesis. 58 (suppl 2): 85–91

    CAS  Google Scholar 

  46. Greenberg RN, Tice AD, Marsh PK, Craven PC, Reilly PM, Bollinger M, Weinandt WJ (1987) Randomized trial of ciprofloxacin compared with other antimicrobial therapy in the treatment of osteomyelitis. Am J Med 82 (Suppl 4A): 266–269

    CAS  PubMed  Google Scholar 

  47. Gentry LO, Rodriguez GG (1990) Oral ciprofloxacin compared with parenteral antibiotics in the treatment of osteomyelitis. Antimicrob Agents Chemother 34: 40–43

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Gentry LO, Rodriguez-Gomez G (1991) Ofloxacin versus parenteral therapy for chronic osteomyelitis. Antimicrob Agents Chemother 35: 538–541

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Trujillo IZ, Valladares G, Nava A (1993) Ciprofloxacin and the treatment of chronic osteomyelitis in adults. Drugs 45 (suppl 3) 454–455

    Google Scholar 

  50. Greenberg RN, Newman MT, Shariaty S, Pectol RW (2000) Ciprofloxacin, lomefloxacin, or lev-ofloxacin as treatment for chronic osteomyelitis. Antimicrob Agents Chemother 44: 164–166

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Shirtliff ME, Calhoun JH, Mader JT (2001) Comparative evaluation of oral levofloxacin and par-enteral nafcillin in the treatment of experimental methicillin-susceptible Staphylococcus aureus osteomyelitis in rabbits. JAntimicrob Chemother 48: 253–258

    CAS  Google Scholar 

  52. Shirtliff ME, Calhoun JH, Mader JT (2002) Gatifloxacin efficacy in treatment of experimental methicillin-sensitive Staphylococcus aureus-induced osteomyelitis in rabbits. Antimicrob Agents Chemother 46: 231–233

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Estrada R, Tsukayama D, Gustilo R (1993) Management of THA infections: a prospective study of 108 cases. Orthop Trans 17: 1114–1115

    Google Scholar 

  54. Tsukayama DT, Estrada R, Gustilo R (1996) Infection after total hip arthroplasty: a study of the treatment of one hundred and six infections. J Bone Joint Surg Am 78: 512–523

    CAS  PubMed  Google Scholar 

  55. Whiteside LA (1994) Treatment of infected total knee arthroplasty. Clin Orthop 299: 169–172

    Google Scholar 

  56. Hartman MB, Fehring TK, Jordan L, Norton HJ (1991) Periprosthetic knee sepsis: the role of irrigation and debridement. Clin Orthop 273 113–118

    Google Scholar 

  57. Burger RR, Basch T, Hopson CN (1991) Implant salvage in infected total knee arthroplasty. Clin Orthop 273: 105–112

    Google Scholar 

  58. Garvin KL, Hanssen AD (1995) Infection after a total hip arthroplasty: past, present, and future. J Bone Joint Surg Am 77: 1576–1588

    CAS  PubMed  Google Scholar 

  59. Hanssen AD, Rand JA, Osmon DR (1994) Treatment of infected total knee arthroplasty with insertion of another prosthesis. The effect of antibiotic-impregnated bone cement. Clin Orthop 309: 44–55

    Google Scholar 

  60. Ivarrson I, Wahlstrom O, Djerf K, Jacobsson SA (1994) Revision of infected hip replacement. Two-stage procedure with a temporary gentamicin spacer. Acta Orthop Scand 65: 7–8

    Google Scholar 

  61. Gillespie WJ (1997) Prevention and management of infection after total joint replacement. Clin Infect Dis 25: 1310–1317

    CAS  PubMed  Google Scholar 

  62. Keating MR, Steckelberg JM (1999) Editorial response: orthopedic prosthesis salvage. Clin Infect Dis 29: 296–297

    CAS  PubMed  Google Scholar 

  63. Brandt CM, Sistrunk WW, Duffy MC, Hanssen AD, Steckelberg JM, Ilstrup DM, Osmon DR (1997) Staphylococcus aureus prosthetic joint infection treated with debridement and prosthesis retention. Clin Infect Dis 24: 914–919

    CAS  PubMed  Google Scholar 

  64. Zimmerli W, Widmer AF, Blatter M, Frei R, Oschner PE, For the Foreign-Body Infection (FBI) Study Group (1998) Role of rifampin for treatment of orthopedic implant-related staphylococcal infections. A randomized controlled trial. JAMA 279: 1537–1541

    Google Scholar 

  65. Tattevin P, Cremieux AC, Pottier P, Huten D, Carbon C (1999) Prosthetic joint infection: when can prosthesis salvage be considered? Clin Infect Dis 29: 292–295

    CAS  PubMed  Google Scholar 

  66. Drancourt M, Stein A, Argenson TN, Zannier A, Curvale G, Rouit D (1993) Oral rifampin plus ofloxacin for treatment of Staphylococcus-infected orthopedic implants. Antimicrob Agents Chemother 37: 1214–1218

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Embil, J.M. (2003). Quinolones for the treatment of skin, soft tissue, bone and prosthetic joint infections. In: Ronald, A.R., Low, D.E. (eds) Fluoroquinolone Antibiotics. Milestones in Drug Therapy. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8103-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8103-6_12

  • Published:

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9437-1

  • Online ISBN: 978-3-0348-8103-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics