Skip to main content

A Discrete-cell Model of Tissue-equivalent Compaction

  • Chapter
Polymer and Cell Dynamics

Summary

We (and others) have spent considerable effort over the last decade to develop continuum models partial differential equations (PDEs) of cell-populated collagen gels. These models have a number of advantages: they are relatively simple and easy to solve, they resemble transport equations familiar to engineers, and they are a natural description of the material on the scale of interest. There have, however, been recent advances in understanding the behavior of individual cells or fibrils. We are thus exploring ways to incorporate discrete cell/fibril information into our continuum model in a logical and tractable way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. F. Oster, J. D. Murray and A. K. Harris (1983) Mechanical aspects of mesenchymal morphogenesis. J Embryol Exp Res 78, 83–125

    Google Scholar 

  2. R. A. F. Clark and P. M. Henson (1988) The Molecular and Cellular Biology of Wound Repair.Plenum Press

    Book  Google Scholar 

  3. G. Gabbiani (1994) Modulation of fibroblastic cytoskeletal features during wound healing and fibrosis. Pathol Res Pract 190, 851–853

    Article  Google Scholar 

  4. T. R. Fray, J. E. Molloy, M. P. Armitage and J. C. Sparrow (1998) Quantification of single human dermal fibroblast contraction. Tissue Engineering 4, 281–291

    Article  Google Scholar 

  5. M. Dembo and Y.-L. Wang (1999) Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophysical Journal 76, 2307–2316

    Article  Google Scholar 

  6. C. G. Galbraith and M. P. Sheetz (1997) A micromachined device provides a new bend on fibroblast traction forces. Proceedings of the National Academy of Sciences of the United States of America 94, 9114–9118

    Article  Google Scholar 

  7. E. Bell, B. Ivarsson and C. Merrill (1979) Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vivo. Proceedings of the National Academy of Sciences of the USA 76, 1274–8

    Article  Google Scholar 

  8. V. H. Barocas and R. T. Tranquillo (1997) A finite element solution for the anisotropic biphasic theory of tissue-equivalent mechanics: the effect of contact guidance on isometric cell traction measurementJournal of Biomechanical Engineering 119, 261–269

    Article  Google Scholar 

  9. H. F. Yee, A. C. Melton and B. N. Tran (2001) RhoA/Rho-associated kinase mediates fibroblast contractile force generation. Biochemical and Biophysical Research Communications 280, 1340–1345

    Article  Google Scholar 

  10. T. Wakatsuki, B. Schwab, N. C. Thompson and E. L. Elson (2001) Effects of cytochalasin D and latrunculin B on mechanical properties of cells. Journal of Cell Science 114, 1025–1036

    Google Scholar 

  11. V. H. Barocas, A. G. Moon and R. T. Tranquillo. (1994) The fibroblast-populated microsphere assay of cell traction force ¡ª Part 2. Measurement of the cell traction coefficient. Journal of Biomechanical Engineering 117, 161–170

    Article  Google Scholar 

  12. L. Olsen, J. A. Sherratt and R. K. Maffei (1995) A mechanochemical model for adult dermal wound contraction and the permanence of the contracted tissue displacement profile. Journal of Theoretical Biology 177, 113–128

    Article  Google Scholar 

  13. V. H. Barocas, T. S. Girton and R. T. Tranquillo (1998) Engineered alignment in media-equivalents: consequences of cell induced compaction on magnetic prealignment. Journal of Biomechanical Engineering 120, 660–666

    Article  Google Scholar 

  14. V. H. Barocas and R. T. Tranquillo (1997) An anisotropic biphasic theory of tissue-equivalent mechanics: the interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance. Journal of Biomechanical Engineering 119, 137–145

    Article  Google Scholar 

  15. S. Timoshenko (1934) Theory of Elasticity.McGraw-Hill

    MATH  Google Scholar 

  16. Z. Cai and S. Kim (2001) A finite element method using singular functions for the Poisson equation: Corner singularities. SIAM Journal of Numerical Analysis 39, 286–299

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Rice, R.B., Barocas, V.H. (2003). A Discrete-cell Model of Tissue-equivalent Compaction. In: Alt, W., Chaplain, M., Griebel, M., Lenz, J. (eds) Polymer and Cell Dynamics. Mathematics and Biosciences in Interaction. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8043-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8043-5_18

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9417-3

  • Online ISBN: 978-3-0348-8043-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics