Skip to main content

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

The historical development of spontaneous rupture propagation, starting from the landmark paper of Griffith in 1920, through to the late 1980s is traced, with particular emphasis on the work carried out at MIT in the 1970s by K. Aki and his co-workers. Numerical applications of Kostrov’s method for planar shear cracks were developed by Hamano, Das and Aki. Simultaneously at MIT, Madariaga considered the radiated field of a dynamic shear crack. The further development of these ideas, for example, three-dimensional spontaneous planar faulting models, continued through the 1980s. Major insight into the maximum possible rupture speeds for earthquakes developed, with the acceptance of the theoretical possibility of supersonic rupture speeds for faults with cohesion and friction, the theoretical developments spurring the search for such observations for earthquake ruptures. Possible mechanisms by which faults stop were elucidated. It was shown that a propagating rupture can jump over barriers for cracks with a cohesive zone at its tip. Complex faulting models, namely the barrier and asperity models, and their associated radiated field developed. In the late 1980s, it was shown that “dynamic” or transient asperities can develop during the complex rupturing process. Even seemingly relatively simple physical situations, can lead to such complex rupturing processes that the usual idea of “rupture velocity” needs to be abandoned in those cases. Some of the work initiated by Aki and his co-workers, such as the details of the transition from sub-Rayleigh to super-shear speeds in inplane shear mode, and the behavior of the cohesive zone size as the crack extends, still remains the subject of research today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aki, K. (1966), Generation and Propagation of G—Waves from the Niigata Earthquake of June 16, 1964. 2. Estimation of Earthquake Movement, Released Energy and Stress—Strain Drop from G—Wave Spectrum, Bull. Eq. Res. Inst. 44, 23–88.

    Google Scholar 

  • Akt, K. (1968), Seismic Displacements near a Fault, J. Geophys. Res. 73, 5359–5376.

    Google Scholar 

  • Akt, K. (1979), Characterization of Barriers on an Earthquake Fault, J. Geophys. Res. 84, 6140–6148.

    Google Scholar 

  • Am, K. Re-evaluation of Stress Drop and Seismic Energy using a New Model of Earthquake faulting, In Source Mechanism and Earthquake Prediction (ed. Allègre, C.) (C.N.R.S. Publ., Paris 1980), pp. 23–50.

    Google Scholar 

  • Am, K. and Richards, P. G., Quantitative Seismology: Theory and Methods (San Francisco: W. H. Freeman and Co., 1980).

    Google Scholar 

  • Aki k., Bouchon, M., Chouet, B., and Das, S. (1977), Quantitative Prediction of Strong Motion for a Potential Earthquake Fault, Annali de Geofisica, 341–368.

    Google Scholar 

  • Akt, K., Fehler, M., and Das, S. (1977), Source Mechanism of Volcanic Tremor: Fluid-Driven Crack Models and their Application to the 1973 Kilaueau Eruption, J. Volcanol. 2, 259–287.

    Google Scholar 

  • Andrews, D. J. (1976a), Rupture Propagation with Finite Stress Antiplane Strain, J. Geophys. Res. 81, 3575–3582.

    Google Scholar 

  • Andrews, D. J. (1976b), Rupture Velocity of Plane Strain Shear Cracks, J. Geophys. Res. 81, 5679–5687.

    Google Scholar 

  • Andrews, D. J. (1985), Dynamic Plane-strain Shear Rupture with a Slip-weakening Friction Law Calculated by a Boundary Integral Method, Bull. Seismol. Soc. Am. 75, 1–22.

    Google Scholar 

  • Archuleta, R. J. (1976), Experimental and Numerical Three-dimensional Simulations of Strike-slip Earthquakes (Ph.D. Dissertation, University of California, San Diego, 1976).

    Google Scholar 

  • Atkinson, C. and Eshelby, J. D. (1968), The Flow of Energy into the TO of a Moving Crack, Intl. J. Frac. 4, 3–8.

    Google Scholar 

  • Barenblatt, G. I. (1959), The Formation of Equilibrium Cracks During Brittle Fracture. General Ideas and Hypotheses, J. Appt Math. Mech. 23, 434–444.

    Google Scholar 

  • Barenblatt, G. I. and Cherepanov, G. P. (1960), On the Wedging of Brittle Bodies (English translation) Phys. Math. Mech. 24, 667–682.

    Google Scholar 

  • Barka, A. A. and Kadinsky-Cadae, K. (1988), Strike-slip Fault Geometry in Turkey and its Influence on Earthquake Activity, Tectonics 7, 663–684.

    Google Scholar 

  • Bouchon, M. (1979), Predictability of Ground Displacement and Velocity near an Earthquake Fault: An Example: The Parkfzeld Earthquake of 1966, J. Geophys. Res. 84, 6149–6156.

    Google Scholar 

  • Brace, W. F. and Walsh, J. B. (1962), Some Direct measurements of the Surface Energy of Quartz and Orthoclase, Am. Mineral. 47, 1111–1122.

    Google Scholar 

  • Brune, J. N. (1970), Tectonic Stress and the Spectra of Seismic Shear Waves from Earthquakes, J. Geophys. Res. 75, 4997–5009.

    Google Scholar 

  • Broberg, K. B. (1960), The Propagation of a Brittle Crack, Arkiv för Fysik 18, 159–192.

    Google Scholar 

  • Broberg, K. B., Cracks and Fracture (Academic Press, New York, 1999).

    Google Scholar 

  • Bruhn, R. L., Gibler, P. R. and Parry, W. T. (1987), Rupture Characteristics of Normal Faults: An Example from the Wasatch Fault Zone, Utah, Continental Extensional Tectonics, Geol. Soc. Special Publ. 29, 337–353.

    Google Scholar 

  • Burridge, R. (1969), The Numerical Solution of Certain Integral Equations with Non-Integrable Kernels Arising in the Theory of Crack Propagation and Elastic Wave Diffraction, Phil. Trans. R. Soc. Lond. A265, 353–381.

    Google Scholar 

  • Burridge, R. (1973), Admissible Speeds for Plane-strain Self-similar Shear Crack with Friction but Lacking Cohesion, Geophys. J. R. Astron. Soc. 35, 439–455.

    Google Scholar 

  • Burridge, R. and Knopoff, L. (1964), Body Force Equivalents for Seismic Dislocations, Bull. Seismol. Soc. Am. 54, 1875–1888.

    Google Scholar 

  • Burridge, R. and Moon, R. (1981), Slipping on a Frictional Fault Plane in Three Dimensions: A Numerical Simulation of a Scalar Analog, Geophys. J. R. Astron. Soc. 67(2), 325–342.

    Google Scholar 

  • Burridge, R. and Willis, J. R. (1969), The Self-similar Problem of the Expanding Elliptical Crack in an Anisotropic Solid, Proc. Camb. Phil. Soc. 66, 443–468.

    Google Scholar 

  • Burridge, R., Conn, G., and Freund, L. B. (1979), The Stability of a Rapid Mode II Shear Crack with Finite Cohesive Traction, J. Geophys. Res. 84, 2210–2222.

    Google Scholar 

  • Chao, C. C. (1960), Dynamical Response of an Elastic Half-space to Tangential Surface Loadings, J. Appl. Mech. 27, 559–567.

    Google Scholar 

  • Cochard, A. and Madariaga, R. (1994), Dynamic Faulting Under Rate-dependent Friction, Pure Appl. Geophys. 142, 419–445.

    Google Scholar 

  • Cochard, A. and Madariaga, R. (1996), Complexity of Seismicity due to Highly Rate-dependent Friction, J. Geophys. Res. 101, 25321–25336.

    Google Scholar 

  • Craggs, J. W. (1960), On the Propagation of a Crack in a Elastic-brittle Material, J. Mech. Phys. Solids, 8, 66–75.

    Google Scholar 

  • Darwin, C., A Naturalist’s Voyage, (John Murray, New York, 1889).

    Google Scholar 

  • Das, S. (1976), A Numerical Study of Rupture Propagation and Earthquake Source Mechanism (Sc.D. Thesis, MIT, 1976).

    Google Scholar 

  • Das, S. (1980), A Numerical Method for Determination of Source Time Functions for General Three-dimensional Rupture Propagation, Geophys. J. R. Astron. Soc. 62, 591–604.

    Google Scholar 

  • Das, S. (1981), Three-dimensional Spontaneous Rupture Propagation and Implications for Earthquake Source Mechanism, Geophys. J. R. Astron. Soc. 67, 375–393.

    Google Scholar 

  • Das, S. (1985), Application of Dynamic Shear Crack Models to the Study of the Earthquake Faulting Process, Intl. J. Frac. 27, 263–276.

    Google Scholar 

  • Das, S. (1986), Comparison of the Radiated Fields Generated by the Fracture of a Circular Crack and a Circular Asperity, Geophys. J. R. Astron. Soc. 85, 601–615.

    Google Scholar 

  • Das, S. (1987), Complex Earthquake Fault Dynamics: Color Movies, Trans. Am. Geophys. Un. 68, 1242.

    Google Scholar 

  • Das, S. (1992), Reactivation of an Oceanic Fracture by the Macquarie Ridge Earthquake of 1989, Nature 357, 150–153.

    Google Scholar 

  • Das, S. (1993), The Macquarie Ridge Earthquake of 1989, Geophys. J. Intl. 115, 778–798.

    Google Scholar 

  • Das, S. and Aki, K. (1977a), A Numerical Study of Two-dimensional Rupture Propagation, Geophys. J. R. Astron. Soc. 50, 643–668.

    Google Scholar 

  • Das, S. and Ak!, K. (1977b), Fault Plane with Barriers: A Versatile Earthquake Model, J. Geophys. Res. 82, 5658–5670.

    Google Scholar 

  • Das, S. and Kostrov, B. V. (1983), Breaking of a Single Asperity: Rupture Process and Seismic Radiation, J. Geophys. Res. 88, 4277–4288.

    Google Scholar 

  • Das, S. and Kostrov, B. V. (1985), An Elliptical Asperity in Shear: Fracture Process and Seismic Radiation, Geophys. J. R. Astron. Soc. 80, 725–742.

    Google Scholar 

  • Das, S. and Kostrov, B. V., Fracture of a single asperity on a finite fault: A model for weak earthquakes? In Earthquake Source Mechanics (eds. Das, S., Boatwright, J., and Scholz, C. H.) (AGU Monograph 37 1986), pp. 91–96.

    Google Scholar 

  • Das, S. and Kostrov, B. V. (1987), On the Numerical Boundary Integral Equation Method for Three-dimensional Dynamic Shear Crack Problems, J. App. Mech. 54, 99–104.

    Google Scholar 

  • Das, S. and Kostrov, B. V. (1988), An Investigation of the Complexity of the Earthquake Source Time Function Using Dynamic Faulting Models, J. Geophys. Res. 93, 8035–8050.

    Google Scholar 

  • Das, S. and Kostrov, B. V. (1990), Inversion for Slip Rate History and Distribution on Fault with Stabilizing Constraints—The 1986 Andreanof Islands Earthquake, J. Geophys. Res. 95, 6899–6913.

    Google Scholar 

  • Das, S. and Kostrov, B. V. (1994), Diversity of Solutions of the Problem of Earthquake Faulting Inversion. Application to SH Waves for the Great 1989 Macquarie Ridge Earthquake, Phys. Earth Planet. Int. 85, 293–318.

    Google Scholar 

  • Das, S. and Suhadolc, P. (1996), On the Inverse Problem for Earthquake Rupture. The Haskell-Type Source Model, J. Geophys. Res. 101, 5725–5738.

    Google Scholar 

  • Das, S., Suhadolc, P., and Kostrov, B. V. (1996), Realistic Inversions to Obtain Gross Properties of the Earthquake Faulting Process, Tectonophysics, Special issue entitled Seismic Source Parameters: from Microearthquakes to Large Events (ed. C. Trifu), 261, 165–177.

    Google Scholar 

  • DAY, S. M. (1982a), Three-dimensional Simulation of Spontaneous Rupture: The Effect of Non-uniform Prestress, Bull. Seismol. Soc. Am. 72, 1881–1902.

    Google Scholar 

  • Day, S. M. (1982b), Three-dimensional Finite Difference Simulation of Fault Dynamics: Rectangular Faults with Fixed Rupture Velocity, Bull. Seismol. Soc. Am. 72, 705–727.

    Google Scholar 

  • Dmowska, R. and Rice, J. R. Fracture theory and its seismological applications. In Continuum Theories in Solid earth Physics (ed. Teisseyre, R.) (Elsevier Publ. Co., Holland 1985) III, pp. 187–255.

    Google Scholar 

  • Dugdale, D. S. (1960), Yielding of Steel Sheets Containing Slits, J. Mech. Phys. Solids 8, 100–110.

    Google Scholar 

  • Eshelby, J. D. The continuum theory of lattice defects. In Progress in Solid State Physics (eds. Seitz, F. and Turnbull, D.), (Academic Press, New York 1956) 3, 79–144.

    Google Scholar 

  • Eshelby, J. D. (1957), The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems, Proc. R. Soc. Lond., A241, 376–396.

    Google Scholar 

  • Eshelby, J. D. (1969), The Elastic Field of a Crack Extending Nonuniformly under General Antiplane Loading, J. Mech. Phys. Solids 17, 177–199.

    Google Scholar 

  • Evvard, J. C. (1950), Use of Source Distributions for Evaluating Theoretical Aerodynamics of Thin Finite Wings at Supersonic Speeds, N. A. C. A. Report, 951.

    Google Scholar 

  • Freund, L. B. (1979), The Mechanics of Dynamic Shear Crack Propagation, J. Geophys. Res. 84, 2199–2209.

    Google Scholar 

  • Freund, L. B., Dynamic Fracture Mechanics (Appl. Math. Mech. Ser., Cambridge University Press, New York), 1990.

    Google Scholar 

  • Griffith, A. A. (1921), The Phenomenon of Rupture and Flow in Solids, Phil. Trans. R. Soc. Lond., Ser. A. 221, 163–198.

    Google Scholar 

  • Hamano, Y. (1974), Dependence of Rupture Time History on the Heterogeneous Distribution of Stress and Strength on the Fault (abstract), Trans. Am. Geophys. Un. 55, 352.

    Google Scholar 

  • Haskell, N. A. (1964), Total Energy and Energy Spectral Density of Elastic Wave Radiation from Propagating Faults, Bull. Seismol. Soc. Am. 54, 1811–1841.

    Google Scholar 

  • Henry, C., DAS, S., and Woodhouse, J. H. (2000), The Great March 25, 1998 Antarctic Plate Earthquake: Moment Tensor and Rupture History, J. Geophys. Res. 105, 16,097–16,118.

    Google Scholar 

  • Howell, B. F., An Introduction to Seismological Research. History and Development (Cambridge, New York, 1990).

    Google Scholar 

  • Hussein’, M. I., Jovanovich, D. B., Randall, M. J., and Freund, L. B. (1975), The Fracture Energy of Earthquakes, Geophys. J. R. Astron. Soc. 43, 367–385.

    Google Scholar 

  • Ida, Y. (1972), Cohesive Force across the Tip of a Longitudinal Shear Crack and Griffith’ Specific Surface Energy, J. Geophys. Res. 77, 3796–3805.

    Google Scholar 

  • Ida, Y. (1973), Stress Concentrations and Unsteady Propagation of Longitudinal Shear Crack, J. Geophys. Res. 78, 3418–3429.

    Google Scholar 

  • Irwin, G. R. (1957), Analysis of Stresses and Strains near the End of a Crack Traversing a Plate, J. Appl. Mech. 24, 361–364.

    Google Scholar 

  • Irwin, G. R. Fracture dynamics. In Fracturing of Metals (Cleveland: ASM 1948), pp. 147–166.

    Google Scholar 

  • Irwin, G. R. (1969), Basic Concepts for Dynamic Fracture Testing, Trans. ASME 91, 519–524.

    Google Scholar 

  • King, G. and Yielding, F. (1984), The Evolution of a Thrust Fault System: Processes of Rupture Initiation, Propagation and Termination in the 1980 El Asnam (Algeria) Earthquake, Geophys. J. R. Astron. Soc. 77, 915–933.

    Google Scholar 

  • Kostrov, B. V. (1964), Selfsimilar Problems of Propagation of Shear Cracks, J. Appl. Math. Mech. 28, 1077–1087.

    Google Scholar 

  • Kostrov, B. V. (1966), Unsteady Propagation of Longitudinal Shear Cracks, J. Appl. Math. Mech. 30, 1241–1248.

    Google Scholar 

  • Kostrov, B. V. (1975), On the Crack Propagation with Variable velocity, Intl. J. Frac. 11, 47–56.

    Google Scholar 

  • Kostrov, B. V. and Das, S. (1984), Evaluation of Stress and Displacement Fields due to an Elliptical Plane Shear Crack, Geophys. J. R. Astron. Soc. 78, 19–33.

    Google Scholar 

  • Kostrov, B. V. and Das, S., Principles of Earthquake Source Mechanics (Appl. Math. Mech. Ser., Cambridge University Press, New York, 1988).

    Google Scholar 

  • Kostrov, B. V. and Nikitin, L. V. (1970), Some General Problems of Mechanics of Brittle Fracture, Archiwum Mechaniki Stosowanej 22, 749–775.

    Google Scholar 

  • Koto, B. (1893), On the Cause of the Great Earthquake in Central Japan, 1891, Tokyo Univ. Coll. Sci. J. 5, 295–353.

    Google Scholar 

  • Leonov, M. YA. and Panasyuk, V. V. (1959), Growth of the Minutest Cracks in a Brittle Body (in Ukrainian), Prikladnaya Meckhanika 5, 391–401.

    Google Scholar 

  • Lindh, A. G. and Boore, D. M. (1981), Control of Rupture by Fault Geometry during the 1966 Parkfield Earthquake, Bull. Seismol. Soc. Am. 71, 95–116.

    Google Scholar 

  • Madariaga, R. (1976), Dynamics of an Expanding Circular Fault, Bull. Seismol. Soc. Am. 66, 639–666.

    Google Scholar 

  • Madariaga, R. (1977), High-Frequency Radiation from Crack (Stress Drop) Models of Earthquake Faulting, Geophys. J. R. Astron. Soc. 51, 625–651.

    Google Scholar 

  • Madariaga, R. (1979), On the Relation between Seismic Moment and Stress Drop in the Presence of Stress and Strength Heterogeneity, J. Geophys. Res. 84, 2243–2249.

    Google Scholar 

  • Madariaga, R. (2000), Earthquake Source Dynamics: Some Open Questions, this volume.

    Google Scholar 

  • Madariaga, R. and Cochard, A. (1992), Heterogeneous Faulting and Friction, Intl. Symp. Earthquake Disaster, Mexico City.

    Google Scholar 

  • Madariaga, R., Peyrat, S., and Olsen, K. B. (2000), Rupture Dynamics in 3D: A Review, In Problems in Geophysics for the New Millennium (Bologna, Italy: Editrice Composition), 89–110.

    Google Scholar 

  • Mcgarr, A., Spottiswoode, S. M., Gat, N. C., and Ortlepp, W. D. (1979), Observations Relevant to Seismic Driving Stress, Stress Drop and Efficiency, J. Geophys. Res. 84, 2251–2261.

    Google Scholar 

  • Mott, N. F. (1948), Fracture of Metals: Theoretical Considerations, Eng. 165, 16–18.

    Google Scholar 

  • Morrissey, J. W. and Rice, J. R. (1998), Crack Front Waves, J. Mech. Phys. Solids 46, 467–487.

    Google Scholar 

  • Movchan, A. B. and Willis, J. R. (1995), Dynamic Weight Functions for a Moving Crack. II. Shear Loading, J. Mech. Phys. Solids 43, 1369–1383.

    Google Scholar 

  • Nabelek, J. and King, G. (1985), Role of Fault Bends in the Initiation and Termination of Earthquake Rupture, Science 228, 984–987.

    Google Scholar 

  • Ohnaka, M. (1996), Nonuniformity of the Constitutive Law Parameters for Shear Rupture and Quasistatic Nucleation to Dynamic Rupture: A Physical Model of Earthquake Generation Process, Proc. Natl. Acad. Sci. U.S.A. 93, 3795–3802.

    Google Scholar 

  • Ohnaka, M. and Shen, L. F. (1999), Scaling of the Shear Rupture Process from Nucleation to Dynamic Propagation: Implications of Geometric Irregularity of the Rupturing Surfaces, J. Geophys. Res. 104, 817–844.

    Google Scholar 

  • Okubo, P. (1989), Dynamic Rupture Modeling with Laboratory-derived Constitutive Relations, J. Geophys. Res. 94, 12321–12335.

    Google Scholar 

  • Palmer, A. C. and Rice, J. R. (1973), The Growth of Slip Surfaces in the Progressive Failure of Overconsolidated Clay, Proc. R. Soc. (Lond.), A332, 527–548.

    Google Scholar 

  • Ramanathan, S. and Fisher, D. S. (1997), Dynamic Instabilities of Planar Tensile Cracks in Heterogeneous Media, Phys. Rev. Lett. 79, 877–880.

    Google Scholar 

  • Randall, M. J. (1971), Elastic Multipole Theory and Seismic Moment, Bull. Seismol. Soc. Am. 61, 1321–1326.

    Google Scholar 

  • REID, H. F., The Mechanics of the Earthquake. In The California Earthquake of April 18, 1906, Report of the State Investigation Commission, (Washington, D. C.: Carnegie Institute of Washington, 1910), 2.

    Google Scholar 

  • Rice, J. R. (1968), A Path Independent Integral and the Approximate Analysis of Strain Concentrations by Notches and Cracks, J. Appl. Mech. 35, 379–386.

    Google Scholar 

  • Rice, J. R., Ben-Zion, Y. and Kim, K. S. (1994), Three-dimensional Perturbation Solution for Dynamic Planar Crack Moving Unsteadily in a Model Elastic solid, J. Mech. Phys. Solids 42, 813–843.

    Google Scholar 

  • Richards, P. G. (1979), Elementary Solutions to Lamb’s Problem fora Point Source and their Relevance to Three-Dimensional Studies of Spontaneous Crack Propagation, Bull. Seismol. Soc. Am. 69, 947–956.

    Google Scholar 

  • Rosakis, A. J., Samudrala, O., and Coker, D. (1999), Cracks Faster than the Shear Wave Speed, Science 284, 1337–1340.

    Google Scholar 

  • Rudnicki, J. W. and Kanamori, H. (1981), Effects of Fault Interaction on Moment, Stress-Drop and Strain Energy Release, J. Geophys. Res. 86, 1785–1793.

    Google Scholar 

  • Sarao, A., Das, S., and Suhadolc, P. (1998), Effect of Non-uniform Station Coverage on the Inversion for Seismic Moment Release History and Distribution for a Haskell-type Rupture Model, J. Seismol. 2, 1–25.

    Google Scholar 

  • Sato, T. and Hirasawa, T. (1973), Body Wave Spectra from Propagating Shear Cracks, J. Phys. Earth 21, 415–431.

    Google Scholar 

  • Savage, J. C. (1966), Radiation from a Realistic Model of Faulting, Bull. Seismol. Soc. Am. 56, 577–592.

    Google Scholar 

  • Sibson, R. Rupture interaction with fault jogs. In Earthquake Source Mechanics (eds. S. Das, J. Boatwright, and C. H. Scholz) (AGU Monograph 37 1986), 157–167.

    Google Scholar 

  • Spottiswoode, S. M. and Mcgarr, A. (1975), Source Parameters of Tremors in a Deep-level Gold Mine, Bull. Seismol. Soc. Am. 65, 93–112.

    Google Scholar 

  • Starr, A. T. (1928), Slip in a Crystal and Rupture in a Solid, Proc. Camb. Phil. Soc. 24, 489–500.

    Google Scholar 

  • Virieux, J. and Madariaga, R. (1982), Dynamic Faulting Studied by a Finite Difference Method, Bull. Seismol. Soc. Am. 72, 345–369.

    Google Scholar 

  • Ward, G. N., Linearized Theory of Steady High-speed Flow (Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, 1955).

    Google Scholar 

  • Willis, J. R. (1967), A Comparison of the Fracture Criteria of Griffith and Barenblatt, J. Mech. Phys. Solids 15, 151–162.

    Google Scholar 

  • Willis, J. R. and Movchan, A. B. (1995), Dynamic Weight Functions for a Moving Crack. I. Mode I Loading, J. Mech. Phys. Solids 43, 319–341.

    Google Scholar 

  • Willis, J. R. and Movchan, A. B. (1997), Three-dimensional Dynamic Perturbation of a Propagating Crack, J. Mech. Phys. Solids 45, 591–610.

    Google Scholar 

  • Woolfries, S. and Willis, J. R. (1999), Perturbation of a Dynamic Planar Crack Moving in a Model Elastic Solid, J. Mech. Phys. Solids 47, 1633–1661.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Das, S. (2003). Spontaneous Complex Earthquake Rupture Propagation. In: Ben-Zion, Y. (eds) Seismic Motion, Lithospheric Structures, Earthquake and Volcanic Sources: The Keiiti Aki Volume. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8010-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8010-7_8

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-7011-4

  • Online ISBN: 978-3-0348-8010-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics