Skip to main content

ℚ-Curves and Galois Representations

  • Chapter
Modular Curves and Abelian Varieties

Part of the book series: Progress in Mathematics ((PM,volume 224))

Abstract

Let K be a number field, Galois over ℚ. A ℚ-curve over K is an elliptic curve over K which is isogenous to all its Galois conjugates. The current interest in ℚ-curves, it is fair to say, began with Ribet’s observation [27] that an elliptic curve over ℚ admitting a dominant morphism from X 1 (N) must be a ℚ-curve. It is then natural to conjecture that, in fact, all ℚ-curves are covered by modular curves. More generally, one might ask: from our rich storehouse of theorems about elliptic curves over ℚ, which ones generalize to ℚ-curves?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Buzzard, M. Dickinson, N. Shepherd-Barron, and R. Taylor. On icosahedral Artin representations. Duke Math. J. 109 (2001), no. 2, 283–318.

    Article  MathSciNet  MATH  Google Scholar 

  2. I. Chen. On relations between Jacobians of certain modular curves. J. Algebra 231 (2000), no. 1, 414–448.

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Darmon and L. Merel. Winding quotients and some variants of Fermat’s last theorem. J. Reine Angew. Math. 490 (1997), 81–100.

    MathSciNet  MATH  Google Scholar 

  4. B. de Smit and B. Edixhoven. Sur un résultat d’Imin Chen. Math. Res. Lett. 7 (2000), no. 2–3, 147–153.

    MathSciNet  MATH  Google Scholar 

  5. W. Duke. The critical order of vanishing of automorphic L-functions with large level. Invent. Math. 119 (1995), no. 1, 165–174.

    Article  MathSciNet  MATH  Google Scholar 

  6. N. Elkies. On elliptic K-curves. Preprint, 1993. Revised version published in this volume.

    Google Scholar 

  7. J. Ellenberg and C. Skinner On the modularity of Q-curves. Duke Math. J. 109 (2001), no. 1, 97–122.

    Article  MathSciNet  MATH  Google Scholar 

  8. []J. Ellenberg. Galois representations attached to Q-curves and the generalized Fermat equation A4 + B2 = CP. To appear in Amer. J. Math.

    Google Scholar 

  9. [] S.D. galbraith. Rational points on Xó (p). Experiment. Math. 8 (1999), no. 4, 311–318.

    Google Scholar 

  10. S.D. Galbraith. Rational points on X,-,(N) and quadratic Q-curves. J. Théor. Nombres Bordeaux 14 (2002), no. 1, 205–219.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. González. Isogenies of polyquadratic Q-curves to their Galois conjugates. Arch. Math. (Basel) 77 (2001), no. 5, 383–390.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. González and J.-C. Lario. Rational and elliptic parametrizations of Q-curves. J. Number Theory 72 (1998), no. 1, 13–31.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Gross. Arithmetic of elliptic curves with complex multiplication. Lecture Notes in Mathematics 776, Springer, Berlin, 1980.

    Google Scholar 

  14. Y. Hasegawa. Q-curves over quadratic fields. Manuscripta Math. 94 (1997), no. 3, 347–364.

    Article  MathSciNet  MATH  Google Scholar 

  15. Y. Hasegawa, K.-i. Hashimoto, and F. Momose. Modular conjecture for Q-curves and QM-curves. Internat. J. Math. 10 (1999), no. 8, 1011–1036.

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Hibino and A. Umegaki. Families of elliptic Q-curves defined over number fields with large degrees. Proc. Japan Acad. Ser. A Math. Sci. 74 (1998), no. 1, 20–24.

    Article  MathSciNet  MATH  Google Scholar 

  17. [] T. Hibino and A. Umegaki. A family of elliptic Q-curves defined over biquadratic fields and their modularity. Acta Arith. 88 (1999), no. 2.

    Google Scholar 

  18. H. Hida. Modular Galois representations of “Neben” type. Preprint, 2000.

    Google Scholar 

  19. H. Hida. Modularity problems of Q-motives and base-change. Preprint, 2000.

    Google Scholar 

  20. W. Ljunggren. Zur Theorie der Gleichung x2 + 1 = Dy 4 . Avh. Norske Vid. Akad. Oslo. I . 1942 (1942), no. 5, 27 pp.

    MathSciNet  Google Scholar 

  21. B. Mazur. Rational isogenies of prime degree. Invent. Math. 44 (1978), no. 2, 129–162.

    Article  MathSciNet  MATH  Google Scholar 

  22. F. Momose. Rational points on the modular curves Xspi;t(p). Compositio Math. 52 (1984), no. 1, 115–137.

    MathSciNet  MATH  Google Scholar 

  23. F. Momose and M. Shimura. Moduli and modularity of (Q, F)-abelian varieties of GL2-type. Algebraic number theory and related topics (Japanese) (Kyoto, 1998). Surikaisekikenkyusho Kokyuroku No. 1097 (1999), 151–160.

    Google Scholar 

  24. J. Quer. Q-curves and abelian varieties of GL2-type. Proc. London Math. Soc. (3) 81 (2000), no. 2, 285–317.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Quer. Fields of definition of Q-curves. 21st Journées Arithmétiques (Rome, 2001). J. Théor. Nombres Bordeaux 13 (2001), no. 1, 275–285.

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Ribenboim. Catalan’s conjecture. Academic Press, Boston, 1994.

    MATH  Google Scholar 

  27. [] K. Ribet. Abelian varieties over Q and modular forms. In Algebra and Topology 1992 (Taejón), 53–79. Korea Adv. Inst. Sci. Tech., (Taejón), 1992. Reprinted in this volume.

    Google Scholar 

  28. K. Ribet. Fields of definition of abelian varieties with real multiplication. In Arithmetic geometry (Tempe, AZ, 1993),107–118, Contemp. Math., 174, Amer. Math. Soc., Providence, RI, 1994.

    Google Scholar 

  29. [] R. Taylor. On icosahedral Artin representations II. To appear, Amer. J. Math.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Ellenberg, J.S. (2004). ℚ-Curves and Galois Representations. In: Cremona, J.E., Lario, JC., Quer, J., Ribet, K.A. (eds) Modular Curves and Abelian Varieties. Progress in Mathematics, vol 224. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7919-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7919-4_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9621-4

  • Online ISBN: 978-3-0348-7919-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics