Skip to main content

Shafarevich-Tate Groups of Nonsquare Order

  • Chapter
Modular Curves and Abelian Varieties

Part of the book series: Progress in Mathematics ((PM,volume 224))

Abstract

Let A denote an abelian variety over ℚ. We give the first known examples in which #Ш(A/ℚ) is neither a square nor twice a square. For example, let E be the elliptic curve y2 + y = x3 — x of conductor 37. We prove that for every odd prime p < 25000 (with p 37), there is a twist A of E x • • • x E (p —1 copies) such that #Ш(A/ℚ) = pn2 for some integer n. We prove this by showing under certain hypothesis on E and p that there is an exact sequence

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Agashe, and W.A. Stein, Visibility of Shafarevich-Tate Groups of Abelian Varieties, J. of Number Theory, 97 (2002), no. 1, 171–184.

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the modularity of elliptic curves over Q: Wild 3-adic exercises, J. Amer. Math. Soc. 15 (2001), no. 4, 843–939.

    Article  MathSciNet  Google Scholar 

  3. W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3–4, 235–265, Computational algebra and number theory (London, 1993). MR 1 484 478.

    Google Scholar 

  4. S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models, Springer-Verlag, Berlin, 1990. MR 91i:14034.

    Google Scholar 

  5. J.E. Cremona, Algorithms for modular elliptic curves, second ed., Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  6. J.E. Cremona, Elliptic Curve Data, http://www.maths.nott.ac.uk/personal/jec/ftp/data/

  7. J.E. Cremona, mwrank (computer software), http://www.maths.nott.ac.uk/personal/jec/ftp/progs/

  8. J.E. Cremona, and B. Mazur, Visualizing elements in the Shafarevich-Tate group, Experiment. Math. 9 (2000), no. 1, 13–28. MR 1 758 797.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Fearnley, Vanishing and Non-Vanishing of L-series of Elliptic Curves Twisted by Dirichlet Characters, Concordia Ph.D. thesis (2001).

    Google Scholar 

  10. M. Flach, A generalisation of the Cassels-Tate pairing, J. Reine Angew. Math. 412 (1990), 113–127. MR 92b:11037.

    MathSciNet  MATH  Google Scholar 

  11. B. Gross and D. Zagier, Heegner points and derivatives of L-series, Invent. Math. 84 (1986), no. 2, 225–320. MR 87j:11057.

    Article  MathSciNet  MATH  Google Scholar 

  12. B.W. Jordan, and R. Livné, On Atkin-Lehner quotients of Shimura curves, Bull. London Math. Soc. 31 (1999), no. 6, 681–685. MR 2000j:11090.

    Article  MathSciNet  MATH  Google Scholar 

  13. K. Kato, p-adic Hodge theory and values of zeta functions of modular forms, Preprint, 244 pages.

    Google Scholar 

  14. V.A. Kolyvagin, Euler systems, The Grothendieck Festschrift, Vol. II, Birk-häuser Boston, Boston, MA, 1990, pp. 435–483. MR 92g:11109.

    Google Scholar 

  15. S. Lang, Algebraic groups over finite fields, Amer. J. Math. 78 (1956), 555–563. MR 19,174a.

    Article  Google Scholar 

  16. B. Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183–266.

    Article  MathSciNet  MATH  Google Scholar 

  17. W.G. McCallum, Duality theorems for Néron models, Duke Math. J. 53 (1986), no. 4, 1093–1124. MR 88c:14062.

    Article  MathSciNet  MATH  Google Scholar 

  18. J.S. Milne, On the arithmetic of abelian varieties, Invent. Math. 17 (1972), 177–190. MR 48 #8512.

    Article  MathSciNet  MATH  Google Scholar 

  19. J.S. Milne, Arithmetic duality theorems, Academic Press Inc., Boston, Mass.,1986.

    Google Scholar 

  20. B. Poonen and E.F. Schaefer, Explicit descent for Jacobians of cyclic cov-ers of the projective line, J. Reine Angew. Math. 488 (1997), 141–188. MR 98k:11087.

    MathSciNet  MATH  Google Scholar 

  21. B. Poonen and M. Stoll, The Cassels-Tate pairing on polarized abelian vari-eties, Ann. of Math. (2) 150 (1999), no. 3, 1109–1149. MR 2000m:11048.

    MathSciNet  Google Scholar 

  22. K.A. Ribet and W.A. Stein, Lectures on Serre’s conjectures, Arithmetic algebraic geometry (Park City, UT, 1999), IAS/Park City Math. Ser., vol. 9, Amer. Math. Soc., Providence, RI, 2001, pp. 143–232. MR 2002h:11047.

    Google Scholar 

  23. K. Rubin, Euler systems and modular elliptic curves, Galois representations in arithmetic algebraic geometry (Durham, 1996), Cambridge Univ. Press, Cambridge, 1998, pp. 351–367. MR 2001a:11106.

    Google Scholar 

  24. P. Schneider, Iwasawa L-functions of varieties over algebraic number fields. A first approach, Invent. Math. 71 (1983), no. 2, 251–293. MR 85d:11063.

    Article  MATH  Google Scholar 

  25. P. Swinnerton-Dyer, The conjectures of Birch and Swinnerton-Dyer, and of Tate, Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin, 1967, pp. 132–157. MR 37 #6287.

    Google Scholar 

  26. J-P. Serre, Local fields, Springer-Verlag, New York, 1979, Translated from the French by Marvin Jay Greenberg.

    MATH  Google Scholar 

  27. J-P. Serre, Algebraic groups and class fields, Springer-Verlag, New York, 1988, Translated from the French.

    Book  MATH  Google Scholar 

  28. J-P. Serre and J.T. Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492–517.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Tate, Duality theorems in Galois cohomology over number fields, Proc. In-ternat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, pp. 288–295. MR 31 #168.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Stein, W.A. (2004). Shafarevich-Tate Groups of Nonsquare Order. In: Cremona, J.E., Lario, JC., Quer, J., Ribet, K.A. (eds) Modular Curves and Abelian Varieties. Progress in Mathematics, vol 224. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7919-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7919-4_17

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9621-4

  • Online ISBN: 978-3-0348-7919-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics