Skip to main content

Seismic Wave Attenuation in Fluid-Saturated Porous Media

  • Chapter
Scattering and Attenuations of Seismic Waves, Part I

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

Contrary to the traditional view, seismic attenuation in Biot’s theory of fluid-saturated porous media is due to viscous damping of local (not global) pore-fluid motion. Since substantial inhomogeneities in fluid permeability of porous geological materials are to be expected, the regions of highest local permeability contribute most to the wave energy dissipation while those of lowest permeability dominate the fluid flow rate if they are uniformly distributed. This dichotomy can explain some of the observed discrepancies between computed and measured attenuation of compressional and shear waves in porous earth. One unfortunate consequence of this result is the fact that measured seismic wave attenuation in fluid-filled geological materials cannot be used directly as a diagnostic of the global fluid-flow permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Rfrryman J. G. (1980). Confirmation of Biot’s theory, Appl. Phys. Lett. 37, 382–384.

    Article  Google Scholar 

  • Berryman, J. G. (1986a), Effective medium approximation for elastic constants of porous solids with miscroscopic heterogeneity, J. Appl. Phys. 59, 1136–1140.

    Article  Google Scholar 

  • Berryman, J. G. (1986b), Elastic wave attenuation in rocks containing fluids, Appl. Phys. Lett. 49, 552–554.

    Article  Google Scholar 

  • Berryman, J. G. and Blair, S. C. (1986), Use of digital image analysis to estimate fluid permeability of porous materials: Application of two-point correlationfunctions, J. Appl. Phys. 60, 1930–1938.

    Article  Google Scholar 

  • Berryman, J. G. and Blair, S. C. (1987), Kozeny-Carman relations and image processing methods for estimating Darcv’s constant, J. Appl. Phys. 62, 2221–2228.

    Article  Google Scholar 

  • Berryman, J. G., Bonner, B. P., and Chin, R. C. Y. (1983), Evidence for correlation of ultrasonic attenuation and fluid permeability in very low porosity water-saturated rocks, Geophys. Res. Lett. 10, 595–598.

    Article  Google Scholar 

  • Biot, M. A. (1956a), Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Lowfreauencv range. J. Acoust. Soc. Am. 28, 168–178.

    Article  Google Scholar 

  • Biot, M. A. (1956b), Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range, J. Acoust. Soc. Am. 28, 179–191.

    Article  Google Scholar 

  • Biot, M. A. (1962), Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys. 33, 1482–1498.

    Article  Google Scholar 

  • Chandler, R. (1981), Transient streaming potential measurements onfluid-saturated porous structures: An experimental verification of Biot’s slow wave in the quasi-static limit, J. Acoust. Soc. Am. 70, 116–121.

    Article  Google Scholar 

  • Chin, R. C. Y., Berryman, J. G., and Hedstrom, G. W. (1985), Generalized ray expansion for pulse propagation and attenuation in fluid-saturated porous media, Wave Motion 7, 43–66.

    Article  Google Scholar 

  • Dutta, N. C. and Ode, H. (1979a), Attenuation and dispersion of compressional waves in fluid-filled rocks with partial gas saturation (White model)—Part I: Biot theory, Geophysics 44, 1777–1788.

    Article  Google Scholar 

  • Dutta, N. C. and Ode H. (1979b), Attenuation and dispersion of compressional waves in fluid-filled rocks with partial gas saturation (White model)—Part II: Results, Geophysics 44, 1789–1805.

    Article  Google Scholar 

  • Dutta, N. C. and Seriff, A. J. (1979), On White’s model of attenuation in rocks with partial gas saturation, Geophysics 44, 1806–1812.

    Article  Google Scholar 

  • Hovem, J. M. (1980), Viscous attenuation of sound in suspensions and high-porosity marine sediments, J. Acoust. Soc. Am. 67. 1559–1563.

    Article  Google Scholar 

  • Hovem, J. M. and Ingram, G. D. (1979), Viscous attenuation of sound in saturated sand, J. Acoust. Soc. Am. 66, 1807–1812.

    Article  Google Scholar 

  • Johnson, D. L., Plona, T. J., Scala, C., Pasierb, F., and Kojima, H. (1982), Tortuosity and acoustic slow waves, Phys. Rev. Lett. 49, 1840–1844.

    Article  Google Scholar 

  • Johnson, D. L., Koplik, J., and Dashen, R. (1986), Theory of dynamic permeability and tortuosity in fluid-saturated porous media, Bull. Am. Phys. Soc. 31, 576.

    Google Scholar 

  • Johnston, D. H., Toksöz, M. N., and Timur, A. (1979), Attenuation of seismic waves in dry and saturated rocks:II. Mechanisms, Geophysics 44, 691–721.

    Article  Google Scholar 

  • Mavko, G. M. and Nur, A. (1975), Melt squirt in the asthenosphere, J. Geophys. Res. 80, 1444–1448.

    Article  Google Scholar 

  • Mavko, G. M. and Nur, A. (1979), Wave attenuation in partially saturated rocks, Geophysics 44, 161–178.

    Article  Google Scholar 

  • Mochizuki, S. (1982), Attenuation in partially saturated rocks, J. Geophys. Res. 87, 8598–8604.

    Article  Google Scholar 

  • Murphy, W. F. III (1982), Effects of partial water saturation on attenuation in Massilon sandstone and Vvcor porous glass, J. Acoust. Soc. Am. 71, 1458–1468.

    Article  Google Scholar 

  • Murphy, W. F. III (1984), Acoustic measures ofpartial gas saturation in tight sandstones, J. Geophys. Res. 89, 11549–11559.

    Article  Google Scholar 

  • Murphy, W. F. III (1985), Sonic and ultrasonic velocities: theory versus experiment, Geophys. Res. Lett. 12, 85–88.

    Article  Google Scholar 

  • O’Connell, R. J. and Budiansky, B. (1977), Viscoelastic properties offluid saturated cracked solids, J. Geophys. Res. 82, 5719–5735.

    Article  Google Scholar 

  • Ogushwitz, P. R. (1985), Applicability of the Biot theory, J. Acoust. Soc. Am. 77, 429–464.

    Article  Google Scholar 

  • Plona, T. J. (1980), Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies, Appl. Phys. Lett. 36, 259–261.

    Article  Google Scholar 

  • Salin, D. and Schön, W. (1981), Acoustics of water saturated packed glass spheres, J. Phys. Lett. 42, 477–480.

    Article  Google Scholar 

  • Simmons, G., Wilkens, R., Caruso, L., Wissler, T., and Miller, F. (1982), Physical properties and microstructures of a set of sandstones, Annual Report to the Schlumberger-Doll Research Center, 1 January 1982, p. VI–16.

    Google Scholar 

  • Simmons, G., Wilkens, R., Caruso, L., Wissler, T., and Miller, F. (1983), Physical properties and microstructures of a set of sandstones, Annual Report to the Schlumberger-Doll Research Center, 1 January 1983, p. VI–16.

    Google Scholar 

  • Stoll, R. D. (1974), Acoustic waves in saturated sediments, in Physics of Sound in Marine Sediments, edited by L. Hampton (Plenum Press, New York), pp. 19–39.

    Chapter  Google Scholar 

  • Tittmann, B. R., Bulau, J. B., and Abdel-Gawad, M. (1984), Dissipation of elastic waves in fluid saturated rocks, in Physics and Chemistry of Porous Media, edited by D. L. Johnson and P. N. Sen (American Institute of Physics. New York, 1984), pp. 131–143.

    Google Scholar 

  • Walsh, J. B. (1969), New analysis of attenuation in partially melted rock, J. Geophys. Res. 74, 4333–4337.

    Article  Google Scholar 

  • Walsh, J. B. and Brace, W. F. (1984), The effect of pressure on porosity and the transport properties of rock, J. Geophys. Res. 89, 9425–9431.

    Article  Google Scholar 

  • White, J. E. (1975), Computed seismic speed and attenuation in rocks with partial gas saturation, Geophysics 40, 224–232.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Basel AG

About this chapter

Cite this chapter

Berryman, J.G. (1988). Seismic Wave Attenuation in Fluid-Saturated Porous Media. In: Aki, K., Wu, RS. (eds) Scattering and Attenuations of Seismic Waves, Part I. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7722-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7722-0_21

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-2254-0

  • Online ISBN: 978-3-0348-7722-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics