Skip to main content

Basic Aspects of Fetal Thermal Homeostasis

  • Chapter
Thermal Balance in Health and Disease

Part of the book series: APS Advances in Pharmacological Sciences ((APS))

Abstract

The fetus in utero generates heat that has to be dissipated via the mother. Immediately after birth, the fetus must be capable above all of responding quickly and efficiently to heat loss to cooler surroundings. Fetal, perinatal and neonatal heat production and temperature regulation have been the focus of experimental research during the last three decades (1–3). Our work has concentrated on the sheep fetus, and thus the following brief overview will outline the principles of fetal thermal homeostasis. Most animal studies in this field have been performed on chronically instrumented, unanesthetized fetal sheep at gestational ages from 120 to 139 days (term 145 days). Fetal weight during this period is in the range of 2.5 to 4 kg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brück K (1978): Heat production and temperature regulation. In: Perinatal Physiology, Stave U, ed. New York London:Plenum Publishing Corporation, 455–498.

    Chapter  Google Scholar 

  2. Adamsons K Jr. (1966): The role of thermal factors in fetal and neonatal life. Pediatr Clin North Am 13, 599–619.

    Google Scholar 

  3. Alexander G, Nicol D, Thorburn G (1973): Thermogenesis in prematurely delivered lambs. In: Fetal and Neonatal Physiology, Comline R, Cross K, Dawes G, Nathanielsz P, eds. Cambridge UK:Cambridge University Press, 410–417.

    Google Scholar 

  4. Gunn TR, Gluckman PD (1983): Development of temperature regulation in the fetal sheep. J Develop Physiol 5,167–179.

    CAS  Google Scholar 

  5. Cefalo RC, Hellegers AE (1978): The effects of maternal hyperthermia on maternal and fetal cardiovascular and respiratory function. Amer J Obst Gynec 131, 687–694.

    CAS  Google Scholar 

  6. Lotgering FK, Gilbert RD, Longo LD (1983): Exercise response in pregnant sheep: blood gases, temperatures, and fetal cardiovascular system. J Appl Physiol 55, 842–850.

    PubMed  CAS  Google Scholar 

  7. Schröder HJ, Hüneke B, Klug A, Stegner H, Carstensen M, Leichtweiss H-P (1987): Fetal sheep temperatures in utero during cooling and application of triiodothyronine, norepinephrine, propranolol and suxamethonium. Pflügers Arch 410, 376–384.

    Article  PubMed  Google Scholar 

  8. Gilbert RD, Power GG (1986): Fetal and uteroplacental heat production in sheep. J Appl Physiol 61, 2018–2022.

    PubMed  CAS  Google Scholar 

  9. Harned HS (1978): Respiration and the respiratory system. In: Perinatal Physiology, Stave U, ed. New York London:Plenum Publishing Corporation, 53–101.

    Chapter  Google Scholar 

  10. Power GG, Schröder H, Gilbert RD (1984): Measurement of fetal heat production using differential calorimetry. J Appl Physiol 57, 917–922.

    PubMed  CAS  Google Scholar 

  11. Abrams R, Caton D, Clapp J, Barron DH (1970): Thermal and metabolic features of life in utero. Clin Obstet Gynecol 13, 549–564.

    Article  PubMed  CAS  Google Scholar 

  12. Schröder HJ, Nissen B (1992): Heat conductances of human umbilical cord blood vessels. Placenta 13, A56. (Abstract)

    Article  Google Scholar 

  13. Faber JJ, Thornburg KL (1983): Placental Physiology. New York:Raven Press.

    Google Scholar 

  14. Schröder HJ, Hatano H, Leichtweiss H-P (1989): Wärmeaustausch in der isolierten Meerschweinchenplacenta. Hamb Ärzteblatt 43, 410–412.

    Google Scholar 

  15. Gilbert RD, Schröder H, Kawamura T, Dale PS, Power GG (1985): Heat transfer pathways between fetal lamb and ewe. J Appl Physiol 59, 634–638.

    PubMed  CAS  Google Scholar 

  16. Rudelstorfer R, Tabsh K, Khoury A, Nuwayhid B, Brinkmann III CR, Assali NS (1986): Heat flux and oxygen consumption of the pregnant uterus. Amer J Obst Gynec 154, 462–470.

    CAS  Google Scholar 

  17. Schröder H, Gilbert RD, Power GG (1988): Computer model of fetal-maternal heat exchange in sheep. J Appl Physiol 65, 460–468.

    PubMed  Google Scholar 

  18. Schröder HJ, Power GG (1993): Raise of fetal core temperature by reduction of umbilical blood flow in instrumented fetal sheep. Pflügers Arch 422 (suppl. 1), R85.(Abstract)

    Google Scholar 

  19. Gunn TR, Ball KT, Gluckman PD (1993): Withdrawal of placental prostaglandins permits thermogenic responses in fetal sheep brown adipose tissue. J Appl Physiol 74, 998–1004.

    PubMed  CAS  Google Scholar 

  20. Power GG, Kawamura T, Dale PS, Schröder H, Gilbert RD (1986): Temperature responses following ventilation of the fetal sheep in utero. J Develop Physiol 8, 477–484.

    CAS  Google Scholar 

  21. Nedergaard J, Cannon B (1992): Brown adipose tissue: development and function. In: Fetal and Neonatal Physiology, Polin RA, Fox WW, eds. Philadelphia:Saunders.

    Google Scholar 

  22. Alexander G, Williams D (1968): Shivering and non-shivering thermogenesis during summit metabolism in young lamb. J Physiol Lond 198, 251–276.

    PubMed  CAS  Google Scholar 

  23. Necker R (1984): Central thermosensitivity: CNS and extra-CNS. In: Thermal Physiology, Hales JRS, ed. New York:Raven Press, 53–61.

    Google Scholar 

  24. Rothwell NJ, Stock MJ (1984): Nonshivering and diet-induced thermogenesis: the role of brown adipose tissue. In: Thermal Physiology, Hales JRS, ed. New York:Raven Press, 145–153.

    Google Scholar 

  25. Kawamura T, Gilbert RD, Power GG (1986): Effect of cooling and heating on the regional distribution of blood flow in fetal sheep. J Develop Physiol 8, 11–21.

    CAS  Google Scholar 

  26. Cannon B, Nedergaard J (1982): The function and properties of brown adipose tissue in the newborn. In: The biochemical development of the fetus and neonate, Jones CT, ed. Amsterdam New York:Elsevier, 697–730.

    Google Scholar 

  27. Block BA (1987): Billfish brain and eye heater: a new look at nonshivering heat production. NIPS 2, 208–213.

    Google Scholar 

  28. Colquhoun EQ, Hettiarachi M, Ye J-M, Rattigan S, Clark MG (1990): Inhibition by vasodilators of noradrenaline and vasoconstrictor-mediated, but not skeletal muscle contraction-induced uptake in the perfused rat hindlimb: implications for non-shivering thermogenesis in muscle tissue. Gen Pharmac 21, 141–148.

    Article  CAS  Google Scholar 

  29. Hill JR (1959): The oxygen consumption of newborn and adult mammals. J Physiol (Lond) 149, 346–373.

    CAS  Google Scholar 

  30. Scopes JE, Ahmed I (1966): Indirect assessment of oxygen requirements in newborn babies by monitoring deep body temperature. Arch Dis Childh 41, 25–33.

    Article  PubMed  CAS  Google Scholar 

  31. Power GG, Gunn TR, Johnston BM, Gluckman PD (1987): Oxygen supply and the placenta limit thermogenic responses in fetal sheep. J Appl Physiol 63, 1896–1901.

    PubMed  CAS  Google Scholar 

  32. Gunn TR, Johnston BM, Iwamoto HS, Fraser M, Nicholls MG, Gluckman PD (1985): Haemodynamic and catecholamine responses to hypothermia in the fetal sheep in utero. J Develop Physiol 7, 241–249.

    CAS  Google Scholar 

  33. Klein AH, Reviczky A, Padbury JF (1984): Thyroid hormones augment catecholamine-stimulated brown adipose tissue thermogenesis in the ovine fetus. Endocrinology 114, 1065–1069.

    Article  PubMed  CAS  Google Scholar 

  34. Baum D, Anthony CL Jr, Stowers C (1971): Impairment of cold-stimulated lipolysis by acute hypoxia. Am J Dis Child 121, 115–119.

    PubMed  CAS  Google Scholar 

  35. Silva JE, Larsen PR (1986): Interrelationship among thyroxine, growth hormone, and the sympathetic nervous system in the regulation of 5′-iodothyronine deiodonase in rat brown adipose tissue. J Clin Invest 77, 1214–1223.

    Article  PubMed  CAS  Google Scholar 

  36. Fraser M, Gunn TR, Butler JH, Johnston BM, Gluckman PD (1985): Circulating thyrotropin (TSH) in the ovine fetus: evidence for pulsatile release and the effect of hypothermia in utero. Pediatr Res 19, 208–212.

    Article  PubMed  CAS  Google Scholar 

  37. Power GG, Gunn TR, Johnston BM, Nichols G, Gluckman PD (1989): Umbilical cord occlusion but not increased plasma T3 or norepinephrine stimulate brown adipose tissue thermogenesis in the fetal sheep. J Develop Physiol 11, 171–177.

    CAS  Google Scholar 

  38. Sawa R, Asakura H, Power GG (1991): Changes in plasma adenosine during simulated birth of fetal sheep. J Appl Physiol 70, 1524–1528.

    PubMed  CAS  Google Scholar 

  39. Preyer WT (1885): Specielle Physiologie des Embryo. Leipzig:Th. Grieben (L.Fernau).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Schröder, H.J., Power, G.G. (1994). Basic Aspects of Fetal Thermal Homeostasis. In: Zeisberger, E., Schönbaum, E., Lomax, P. (eds) Thermal Balance in Health and Disease. APS Advances in Pharmacological Sciences. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7429-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7429-8_33

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7431-1

  • Online ISBN: 978-3-0348-7429-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics