Skip to main content

Poorly Selective Cation Channels in Apical Membranes of Epithelia

  • Chapter
Nonselective Cation Channels

Part of the book series: EXS ((EXS,volume 66))

Summary

The apical membrane of frog skin contains two types of pathways which allow the passage of several monovalent cations in the absence of external Ca2+. Differences between the two pathways concern their open-close kinetics, selectivity, and the affinity for several blocking agents. Type S channels open and close relatively slowly, whereas type F channels display fast open-close kinetics. Both channel types allow the passage of Na+, K+, and Rb+ currents which are blocked by divalent cations and La3+ added to the extracellular side. Type F channels are permeable for Cs+ which is, however, excluded from type S channels. Shifts in open-close kinetics induced by Mg2+ occur at concentrations below 5 μM for type F channels, whereas more than a tenfold higher dose is required for the type S pathway. UO2 2+ concentrations up to 100 μM only occlude type S channels while 100 μM tetracaine selectively blocks type F channels.

Apical membranes of toad urinary bladder, cultured amphibian renal epithelia (A6), and toad colon contain only type F channels. In toad bladder and A6 cells volume expansion strongly activates this pathway. Macroscopic currents carried by Ba2+ and Ca2+ could be recorded after activation of toad bladders with oxytocin and treatment of the apical surface with nanomolar concentrations of Ag+, which seems to interact with a site located at the channel interior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aelvoet I, Erlij D, Van Driessche W (1988). Activation and blockage of a calcium-sensitive cation-selective pathway in the apical membrane of toad urinary bladder. J. Physiol. (London) 398:555–574.

    Google Scholar 

  • Bear CE (1990). A nonselective cation channel in rat liver cells is activated by membrane stretch. Am. J. Physiol. 268:C421–C428.

    Google Scholar 

  • Candia OA, Yorio T (1992). Water permeability response to vasopressin (AVP) of A6 cells grown on Anocell filter inserts. FASEB J. 6:A1194.

    Google Scholar 

  • Civan MM (1983). Epithelial ions and transport. Application of biophysical techniques. In: Transport in Life Sciences. Bittar EE, editor. New York: John Wiley & Sons, vol. 4.

    Google Scholar 

  • Cox TC, Alvarado RH (1979). Electrical and transport characteristics of skin of larval Rana catesbeiana. Am. J. Physiol. 237:R74–R79.

    Google Scholar 

  • Crowe WE, Wills NK (1991). A simple method for monitoring changes in cell height using fluorescent microbeads and an Ussing-type chamber for the inverted microscope. Pflügers Arch. 419:349–357.

    Article  Google Scholar 

  • Cuthbert AW, Wong PYD (1972). The role of Ca2+ ions in the interaction of amiloride with membrane receptors. Mol. Pharmacol. 8:222–229.

    Google Scholar 

  • Cuthbert AW, Wong PYD (1974). Calcium release in relation to permeability changes in toad bladder epithelium following antidiuretic hormone. J. Physiol. 241:407–422.

    Google Scholar 

  • Das S, Palmer LG (1989). Extracellular Ca2+ controls outward rectification by apical cation channels in toad urinary bladder: patch-clamp and whole-bladder studies. J. Membrane Biol. 107:157–168.

    Article  Google Scholar 

  • Desmedt L, Simaels J, Van Driessche W (1991). Amiloride blockage of Na+ channels in amphibian epithelia does not require external Ca2+. Pflügers Arch. 419:632–638.

    Article  Google Scholar 

  • Desmedt L, Simaels J, Van Driessche W (1993a). Ca2 + -blockable poorly selective cation channels in the apical membrane of amphibian epithelia. I. UO2 2+ reveals two channel types. J. Gen. Physiol. 101:85–102.

    Article  Google Scholar 

  • Desmedt L, Simaels J, Van Driessche W (1993b). Ca2 + -blockable poorly selective cation channels in the apical membrane of amphibian epithelia. II. Tetracaine blocks the UO2 2+ -insensitive pathway. J. Gen. Physiol. 101:103–116.

    Article  Google Scholar 

  • De Wolf I, Van Driessche W (1986). Voltage dependent Ba2+ block of K+ channels in the apical membrane of frog skin. Am. J. Physiol. 251:C696–C706.

    Google Scholar 

  • Fabiato A, Fabiato F (1979). Calculator programs for computing the composition of solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J. Physiol. 75:463–505.

    Google Scholar 

  • Hillyard SD, Van Driessche W (1989). Effect of amiloride on the poorly selective cation channel of larval bullfrog skin. Am. J. Physiol. 256:068–074.

    Google Scholar 

  • Krattenmacher R, Voigt R, Clauß W (1990). Ca-sensitive sodium absorption in the colon of Xenopus laevis. J. Comp. Physiol. B 160:161–165.

    Article  Google Scholar 

  • Levine SD, Schlondorff D (1984). The role of calcium in the action of vasopressin. Seminars in Nephrol. 4:144–158.

    Google Scholar 

  • Marcus DC, Takeuchi S, Wangemann P (1992). Ca2+-activated nonselective cation channel in apical membrane of vestibular dark cells. Am. J. Physiol. 262:0423–0429.

    Google Scholar 

  • Martell AE, Smith RM (1974). Critical stability constants. In: Amino Acids. New York: Plenum, vol. 1.

    Google Scholar 

  • McCarthy NA, O’Neil RG (1991). Calcium-dependent control of volume regulation in renal proximal tubule cells: II. Roles of dihydropyridine-sensitive and -insensitive Ca2+ entry pathways. J. Membrane Biol. 123:161–170.

    Article  Google Scholar 

  • Montrose-Rafizadeh C, Guggino WB (1991). Role of intracellular calcium in volume regulation by rabbit medullary thick ascending limb cells. Am. J. Physiol. 260:F402–F409.

    Google Scholar 

  • Nagel W (1978). Effects of ADH upon electrical potential and resistance of apical and basolateral membranes of frog skin. J. Membrane Biol. 42:99–122.

    Article  Google Scholar 

  • Parisi M, Ibarra C, Porta M (1987). Intracellular Ca2+ concentration and antidiuretic hormone-induced increase in water permeability: effects of ionophore A23187 and quinidine. Biochem. Biophys. Acta 905:399–408.

    Article  Google Scholar 

  • Prabhu SD, Salama G (1990). The heavy metal ions Ag+ and Hg2+ trigger calcium release from cardiac sarcoplasmic reticulum. Arch. Biochem. Biophys. 277:47–55.

    Article  Google Scholar 

  • Salama G, Abramson J (1984). Silver ions trigger Ca2+ release by acting at the apparent physiological release site in sarcoplasmic reticulum. J. Biol. Chem. 259:13363–13369.

    Google Scholar 

  • Stein WD (1967). The movement of molecules across cell membranes. New York, London: Academic Press.

    Google Scholar 

  • Van Driessche W (1986). Lidocaine blockage of basolateral potassium channels in the amphibian urinary bladder. J. Physiol. (London) 381:575–593.

    Google Scholar 

  • Van Driessche W (1987). Ca2+ channels in the apical membrane of the toad urinary bladder. Pflügers Arch. 410:243–249.

    Article  Google Scholar 

  • Van Driessche W, Aelvoet I, Erlij D (1987). Oxytocin and cAMP stimulate monovalent cation movements through a Ca2+-sensitive, amiloride-insensitive channel in the apical membrane of toad urinary bladder. Proc. Natl. Acad. Sci. USA 84:313–317.

    Article  Google Scholar 

  • Van Driessche W, Desmedt L, Simaels J (1991). Blockage of Na+ currents through poorly-selective cation channels in the apical membrane of frog skin and toad urinary bladder. Pflügers Arch. 418:193–203.

    Article  Google Scholar 

  • Van Driessche W, De Smet P (1992). Cell volume expansion activates poorly-selective cation channels in the apical membrane of A6 cells. FASEB J. 6:A1195.

    Google Scholar 

  • Van Driessche W, Erlij D, Aelvoet I (1990). Ca2+ entry through the apical membrane reduces antidiuretic-induced hydroosmotic response in toad urinary bladder. Pflügers Arch. 417:342–348.

    Article  Google Scholar 

  • Van Driessche W, Simaels J, Aelvoet I, Erlij D (1988). Cation-selective channels in amphibian epithelia: electrophysiological properties and activation. Comp. Biochem. Physiol. 90A: 693 699.

    Google Scholar 

  • Van Driessche W, Zeiske W (1985a). Ca2+-sensitive, spontaneously fluctuating, cation channels in the apical membrane of the adult frog skin epithelium. Pflügers Arch. 405:250–259.

    Article  Google Scholar 

  • Van Driessche W, Zeiske W (1985b). Ionic channels in epithelial cell membranes. Physiol. Rev. 65:833 903.

    Google Scholar 

  • Völkl H, Paulmichl M, Lang F (1988). Cell volume regulation in renal cortical cells. Renal Physiol. Biochem. 3 5:158–173.

    Google Scholar 

  • Wills NK, Millinoff LP (1990). Amiloride-sensitive Na+ transport across cultured renal (A6) epithelium: evidence for large currents and high Na.K selectivity. Pflügers Arch. 416:481–492.

    Article  Google Scholar 

  • Wong SME, Chase HS (1988). Effect of vasopressin on intracellular [Ca] and Na transport in cultured toad bladder cells. Am. J. Physiol. 255:F1015–F1024.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Van Driessche, W., Desmedt, L., De Smet, P., Simaels, J. (1993). Poorly Selective Cation Channels in Apical Membranes of Epithelia. In: Siemen, D., Hescheler, J. (eds) Nonselective Cation Channels. EXS, vol 66. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7327-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7327-7_18

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7329-1

  • Online ISBN: 978-3-0348-7327-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics