Skip to main content

Muscarinic acetylcholine receptors in invertebrates: Comparisons with homologous receptors from vertebrates

  • Chapter
Comparative Molecular Neurobiology

Part of the book series: EXS ((EXS,volume 63))

Summary

The pharmacology, physiology and molecular biology of invertebrate muscarinic acetylcholine receptors are compared with current knowledge concerning vertebrate muscarinic acetylcholine receptors. Evidence for the existence of multiple receptor subtypes in invertebrates is examined, emphasizing what is presently known about the sensitivity of invertebrate preparations to subtype selective ligands previously defined in vertebrate studies. Other evidence for muscarinic receptor subtypes which is examined includes: heterogeneous responses to classical muscarinic ligands and evidence for coupling of invertebrate muscarinic receptors to several different classes of second messenger systems. Clues regarding possible functions for invertebrate muscarinic receptors are discussed, including evidence from both physiological studies and in situ localization studies which reveal patterns of receptor protein and mRNA expression. A detailed analysis of the structural similarities between a cloned Drosophila muscarinic receptor and vertebrate muscarinic receptors is also presented. Regions of the receptors that may be involved in ligand binding, effector coupling and receptor regulation are identified in this comparison. Future directions for invertebrate muscarinic receptor research are considered including: methods for cloning other receptor subtypes, methods for cloning homologous receptors from other species and genetic approaches for determining the physiological roles of muscarinic receptors

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdallah, E. A. M., Eldefrawi, M. E. and Eldefrawi, A. T. (1991) Pharmacological characterization of muscarinic receptors of insect brains. Archs. Insect Biochem. Physiol. 17, 107–118.

    Google Scholar 

  • Aguilar, J. S., Fonseca, M. I. and Lunt, G. G. (1989) Differential effect of ethanol on muscarinic cholinergic binding to rat and locust neural membranes. Neurochem. Res. 14, 765–770.

    Google Scholar 

  • Akiba, I., Kubo, T., Maeda, A., Bujo, H., Nakai, J., Mishina, M. and Numa, S. (1988) Primary structure of porcine muscarinic acetylcholine receptor III and antagonist binding studies. FEBS Lett. 235, 257–261.

    Google Scholar 

  • Allard, W. J., Sigal, I. S. and Dixon, R. A. F. (1987) Sequence of the gene encoding the human Ml muscarinic acetylcholine receptor. Nucl. Acids Res. 15, 10, 604.

    Google Scholar 

  • Anctil, M., Laberge, M. and Martin, N. (1984) Neuromuscular pharmacology of the anterior intestine of Chaetopterus variopedatus, a filter feeding polychaete. Comp. Biochem. Physiol. 79C, 343–351.

    Google Scholar 

  • Andersson, R. and Fange, R. (1967) Pharmacologic receptors of an annelid Lumbricus terrestris. Archs. Int. Physiol. Biochim. 75, 461–468.

    Google Scholar 

  • Applebury, M. L. and Hargrave, P. A. (1986) Molecular biology of the visual pigments. Vision Res. 26, 1881–1895.

    Google Scholar 

  • Ashkenazi, A. Peralta, E. G. Winslow, J. W., Ramachandran, J. and Capon, D. J. (1989) Functionally distinct G proteins selectively couple different receptors to PI hydrolysis in the same cell. Cell 56, 487–493.

    Google Scholar 

  • Barber, A. (1985) Actions of acetylcholine on the salivary gland cells of the pond snail, Planorbis corneus. Comp. Biochem. Physiol. 80C, 175–184.

    Google Scholar 

  • Barker, D. L., Herbert, E., Hildebrand, J. G. and Kravitz, E. (1972) Acetylcholine and lobster sensory neurones. J. Physiol (London) 226, 205–229.

    Google Scholar 

  • Barker, D. L., Murray, T. F., Siebenaller, J. F. and Mpitsos, G. J. (1986) Characterization of muscarinic cholinergic receptors in the crab nervous system. J. Neurochem. 46, 583–588.

    Google Scholar 

  • Ben-Barak, J. B. and Dudai, Y. (1979) Cholinergic binding sites in rat hippocampal formation: Properties and ontogenesis. Brain Res. 166, 245–257.

    Google Scholar 

  • Benson, J. A. (1988a) Bicuculline blocks the response to acetylcholine and nicotine but not to muscarine or GABA in isolated insect neuronal somata. Brain Res. 458, 65–71.

    Google Scholar 

  • Benson, J. A. (1988b) Transmitter receptors on insect neuronal somata: GABAergic and cholinergic pharmacology, in: Neurotox’88: Molecular Basis of Drug and Pesticide Action, pp. 193–206. Ed. G. G. Lunt. Elsevier, NY.

    Google Scholar 

  • Bier, E., Vaessin, H., Shepherd, S., Lee, K., McCall, K., Barbel, S., Ackerman, L., Carretto, R., Uemura, T., Grell, E., Jan, L. Y. and Jan, Y. N. (1989) Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector. Genes Dev. 3, 1273–1287.

    Google Scholar 

  • Birdsall, N. J. M. and Hulme E. C. (1989) The binding properties of muscarinic receptors, in: The Muscarinic Receptors, pp. 31–92. Ed. J. H. Brown. The Humana Press, Clifton, NJ.

    Google Scholar 

  • Bonner, T. I. (1989) New subtypes of muscarinic acetylcholine receptors. Trends Pharmacol Sci. 10 (suppl.), 11–15.

    Google Scholar 

  • Bonner, T. I., Buckley, N. J., Young, A. C. and Brann, M. R. (1987) Identification of a family of muscarinic acetylcholine receptor genes. Science 237, 527–532.

    Google Scholar 

  • Bonner, T. I., Young, A. C., Brann, M. R. and Buckley, N. J. (1988) Cloning and expression of the human and rat m5 muscarinic acetylcholine receptor genes. Neuron 1, 403–410.

    Google Scholar 

  • Bossy, B., Ballivet, M. and Spierer, P. (1988) Conservation of neural nicotinic acetylcholine receptors from Drosophila to vertebrate central nervous systems. EM BO J. 7, 611–618.

    Google Scholar 

  • Braun, T., Schofield, P. R., Shivers, B. D., Pritchett, D. B. and Seeburg, P. H. (1987) A novel subtype of muscarinic receptor identified by homology screening. Biochem. Biophys. Res. Comm. 149, 125–132.

    Google Scholar 

  • Breer, H. (1981) Properties of putative nicotinic and muscarinic cholinergic receptors in the central nervous system of Locusta migratoria. Neurochem. Int. 3, 43–52.

    Google Scholar 

  • Breer, H. and Knipper, M. (1984) Characterization of acetylcholine release from insect synaptosomes. Insect Biochem. 14, 337–344.

    Google Scholar 

  • Bujo, H., Nakai, J., Kubo, T., Fukuda, K., Akiba, L., Maeda, A., Mishina, M. and Numa, S. (1988) Different sensitivities to agonist of muscarinic receptor subtypes. FEBS Lett. 240, 95–100.

    Google Scholar 

  • Burgen, A. S. V. (1989) History and basic properties of the muscarinic cholinergic receptor, in: The Muscarinic Receptors, pp. 3–27. Ed. J. H. Brown. The Humana Press, Clifton, NJ.

    Google Scholar 

  • Carr, C. E. and Fourtner, C. R. (1980) Pharmacological analysis of a monosynaptic reflex in the cockroach, Periplaneta americana. J. exp. Biol. 86, 259–273.

    Google Scholar 

  • Chapman, C. G. and Browne, M. J. (1990) Isolation of the human ml (Hml) muscarinic acetylcholine receptor gene by PCR amplification. Nucl Acids Res. 18, 2191.

    Google Scholar 

  • Chen, C., Malone, T., Beckendorf, S. K. and Davis, R. L. (1987) At least two genes reside within a large intron of the dunce gene of Drosophila. Nature 329, 721–724.

    Google Scholar 

  • Colquhoun, L., Holden-Dye, L. and Walker, R. J. (1991) The pharmacology of cholinoceptors on the somatic muscle cells of the parasitic nematode Ascaris suum. J. exp. Biol. 158, 509–530.

    Google Scholar 

  • Conklin, B. R., Brann, M. R., Buckley, N. J., Ma, A. L., Bonner, T. I. and Axelrod, J. (1988) Stimulation of arachidonic acid release and inhibition of mitogenesis by cloned genes for muscarinic receptor subtypes stably expressed in A9 L cells. Proc. Natl Acad. Sci. USA 85, 8698–8702.

    Google Scholar 

  • Cooley, L., Berg, C and Spradling, A. (1988) Controlling P element insertional mutagenesis. Trends Genet. Sci. 4, 254–258.

    Google Scholar 

  • Culotti, J. G. and Klein, W. L. (1983) Occurrence of muscarinic acetylcholine receptors in wild type and cholinergic mutants of Caenorhabditis elegans. J. Neurosci. 3, 359–368.

    Google Scholar 

  • Curtis, C. A. M., Wheatley, M., Bansal, S., Birdsall, N. J. M., Eveleigh, P., Pedder, E. K., Poyner, D. and Hulme, E. C. (1989) Propylbenzilcholine mustard labels an acidic residue in transmembrane helix 3 of the muscarinic receptor. J. Biol Chem. 264, 489–495.

    Google Scholar 

  • Dahl, S. G., Edvardsen, O. and Sylte, I. (1991) Molecular dynamics of dopamine at the D2 receptor. Proc. Natl. Acad. Sci. USA 88, 8111–8115.

    Google Scholar 

  • Dale, H. H. (1914) The action of certain esters and ethers of choline, and their relation to muscarine. J. Pharmacol. exp. Ther. 6, 147–190.

    Google Scholar 

  • dal Toso, R., Sommer, B., Ewert, M., Herb, A., Pritchett, D. B., Bach, A., Shivers, B. D. and Seeburg, P. H. (1989) The dopamine D2 receptor: two molecular forms generated by alternative splicing. EM BO J. 8, 4025–4034.

    Google Scholar 

  • David, J. A. and Pitman, R. M. (1990) Functional muscarinic receptors on an identified neurone in the isolated metathoracic ganglion of the cockroach Periplaneta americana. J. Physiol. 429, P66.

    Google Scholar 

  • David, J. A. and Sattelle, D. B. (1984) Actions of cholinergic pharmacological agents on the cell body membrane of the fast coxal depressor motoneuron of the cockroach Periplaneta americana, J. exp. Biol 108, 119–136.

    Google Scholar 

  • Devereux, J., Haeberli, P. and Smithies, O. (1984) A comprehensive set of sequence analysis programs for the VAX. Nucl. Acids Res. 12, 387–395.

    Google Scholar 

  • Dixon, R. A., Sigal, I. S., Candelore, M. R., Register, R. B., Rands, E. and Strader, C. D. (1987) Structural features required for ligand binding to the beta-adrenergic receptor. EM BO J. 6, 3269–3275.

    Google Scholar 

  • Dudai, Y. (1979) Cholinergic receptors in insects. Trends Biochem. Sci. 4, 40–44.

    Google Scholar 

  • Dudai, Y. (1981) Modulation of a putative muscarinic receptor from Drosophila melanogaster by ions and a guanyl nucleotide. Comp. Biochem. Physiol. 69C, 387–390.

    Google Scholar 

  • Dudai, Y. and Ben-Barak, J. (1977) Muscarinic receptor in Drosophila melanogaster demonstrated by binding of [3H]quinuclidinyl benzilate. FEBS Lett. 81, 134–136.

    Google Scholar 

  • Dudai, Y., Jan, Y. N., Byers, D., Quinn, W. G. and Benzer, S. (1976) Dunce a mutant of Drosophila deficient in learning. Proc. Natl. Acad. Sci. USA 73, 1684–1688.

    Google Scholar 

  • Duerr, J. S. and Quinn, W. G. (1982) Three Drosophila mutations that block associative learning also affect habituation and sensitization. Proc. Natl. Acad. Sci. USA 79, 3646–3650.

    Google Scholar 

  • Duggan, M. J. and Lunt, G. G. (1988) Coupling of muscarinic receptors to second messenger systems in locust ganglia, in: Neurotox’88: Molecular Basis of Drug and Pesticide Action, pp. 245–253. Ed. G. G. Lunt. Elsevier, NY.

    Google Scholar 

  • Eisen, J. S. and Marder, E. (1982) Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. III. Synaptic connections of electrically coupled pyloric neurons. J. Neurophys. 48, 1392–1415.

    Google Scholar 

  • England, B. P., Ackerman, M. S. and Barrett, R. W. (1991) A chimeric D2 dopamine/ml muscarinic receptor with D2 binding specificity mobilizes intracellular calcium in response to dopamine. FEBS Lett. 279, 87–90.

    Google Scholar 

  • Erber, J., Masuhr, T. J. and Menzel, R. (1980) Localization of short-term memory in the brain of the bee Apis mellifera. Physiol. Entomol. 5, 343–358.

    Google Scholar 

  • Erzen, I. and Brzin, M. (1978) Cholinergic mechanisms in Hydra. Comp. Biochem. Physiol. 59C, 39–43.

    Google Scholar 

  • Evans, T. G., Leake, L. D. and Walker, R. J. (1971) The action of cholinergic drugs on the heart-beat of the limpet, Patella vulgata. Comp. gen. Pharmacol. 2, 5–14.

    Google Scholar 

  • Federman, A. D., Conklin, B. R., Schrader, K. A., Reed, R. R. and Bourne, H. R. (1992) Hormonal stimulation of adenylyl cyclase through Gi-protein βγ subunits. Nature 356, 159–161.

    Google Scholar 

  • Findlay, J. and Eliopoulos, E. (1990) Three-dimensional modelling of G protein-linked receptors. Trends Pharmacol. Sci. 11, 492–499.

    Google Scholar 

  • Florey, E. (1967) Neurotransmitters and modulators in the animal kingdom. Fed. Proc. 26, 1164–1178.

    Google Scholar 

  • Florey, E. and Rathmayer, M. (1980) Pharmacological characterization of cholinoreceptors of cardiac ganglion cells of crustaceans. Gen. Pharmacol. 11, 47–53.

    Google Scholar 

  • Fossier, P., Poulain, B., Baux, G. and Tauc, L. (1988) Both presynaptic nicotinic-like and muscarinic-like autoreceptors regulate acetylcholine release at an identified neuro-neuronal synapse of Aplysia. Pflugers Archs. 411, 345–352.

    Google Scholar 

  • Fraser, C. M. (1989) Site-directed mutagenesis of β-adrenergic receptors: Identification of conserved cysteine residues that independently affect ligand binding and receptor activation. J. Biol. Chem. 264, 9266–9270.

    Google Scholar 

  • Fraser, C. M., Wang, C.-D, Robinson, D. A., Gocayne, J. D. and Venter, J. C. (1989) Site directed mutagenesis of ml muscarinic acetylcholine receptors: Conserved aspartic acids play important roles in receptor function. Mol. Pharmacol. 36, 840–847.

    Google Scholar 

  • Freschi, J. E. (1991) The effect of subtype-selective muscarinic receptor antagonists on the cholinergic current in motoneurons of the lobster cardiac ganglion. Brain Res. 552, 87–92.

    Google Scholar 

  • Freschi, J. E. and Livengood, D. R. (1989) Membrane current underlying muscarinic cholinergic excitation of motoneurons in lobster cardiac ganglion. J. Neurophys. 62, 984–995.

    Google Scholar 

  • Fulton, B. P. (1982) Presynaptic acetylcholine receptors at the excitatory amino acid synapse in locust muscle. Neuroscience 7, 2117–2124.

    Google Scholar 

  • Fukuda, K., Kubo, T., Akiba, I., Maeda, A., Mishina, M. and Numa, S. (1987) Molecular distinction between muscarinic acetylcholine receptor subtypes. Nature 327, 623–625.

    Google Scholar 

  • Ger, B. A. and Zeimal, E. V. (1976) Two kinds of choline receptors on the membrane of the completely isolated identified Planorbarius corneus neurone. Nature 259, 681–684.

    Google Scholar 

  • Gloor, G. B., Nassif, N. A., Johnson-Schlitz, D. M., Preston, C. R. and Engels, W. R. (1991) Targeted gene replacement in Drosophila via P element-induced gap repair. Science 253, 1110–1117.

    Google Scholar 

  • Gocayne, J., Robinson, D. A., Fitzgerald, M. G., Chung, F-Z, Kerlavage, A. R., Lentes, K-U, Lai, J., Wang, C-D, Fraser, C. M. and Venter, J. C. (1987) Primary structure of rat cardiac β-adrenergic and muscarinic cholinergic receptors obtained by automated DNA sequence analysis: Further evidence for a multigene family. Proc. Natl. Acad. Sci. 84, 8296–8300.

    Google Scholar 

  • Gorczyca, M. G., Budnik, V., White, K. and Wu, C. F. (1991) Dual muscarinic and nicotinic action on a motor program in Drosophila. J. Neurobiol. 22, 391–404.

    Google Scholar 

  • Gowtals, P. J. and Fristrom, J. W. (1984) Three neighbouring genes interact with the Broad-Complex and the Stubble-stubbloid locus to affect imaginal disc morphogenesis in Drosophila. Genetics 127, 747–759.

    Google Scholar 

  • Grandy, D. K., Marchionni, M. A., Makam, H., Stofko, R. E., Alfano, M., Frothingham, L., Fischer, J. B., Burke, H. K., Bunzow, J. R., Server, A. C. and Civelli, O. (1989) Cloning of the cDNA and gene for a human D2 dopamine receptor. Proc. Natl. Acad. Sci. USA 86, 9762–9766.

    Google Scholar 

  • Gray, J. A., Enz, A. and Spiegel, R. (1989) Muscarinic agonists for senile dementia: Past experience and future trends. Trends Pharmacol. Sci. 10 (suppl.), 85–87.

    Google Scholar 

  • Greenspan, R. J. (1980) Mutations of choline acetyltransferase and associated neural defects in Drosophila melanogaster. J. Comp. Physiol. 137, 83–92.

    Google Scholar 

  • Greenspan, R. J., Finn, J. A. and Hall, J. C. (1980) Acetylcholinesterase mutants in Drosophila and their effects on the structure and function of the central nervous system. J. Comp. Neurol. 189, 741–774.

    Google Scholar 

  • Grigliatti, T. A., Hall, L., Rosenbluth, R. and Suzuki, D. T. (1973) Temperature sensitive mutations in Drosophila melanogaster. XIV. A selection of immobile adults. Mol. Gen. Genet. 120, 107–114.

    Google Scholar 

  • Hall, J. C., Alahiotis, S. N., Strumpf, D. A. and White, K. (1980) Behavioural and biochemical defects in temperature-sensitive acetylcholinesterase mutants of Drosophila melanogaster. Genetics 96, 939–965.

    Google Scholar 

  • Haim, N., Nahum, S. and Dudai, Y. (1979) Properties of a putative muscarinic cholinergic receptor from Drosophila melanogaster. J. Neurochem. 32, 543–552.

    Google Scholar 

  • Hamilton, B. A., Palazzolo, M. J., Chang, J. H., VijayRaghaven, K., Mayeda, C. A., Whitney, M. A. and Meyerowitz, E. M. (1991) Large scale screen for transposon insertions into cloned genes. Proc. Natl. Acad. Sci. USA 88, 2731–2735.

    Google Scholar 

  • Hartvig. P., Gilberg, P. G., Gordh, Jr., T. and Post, C. (1989) Cholinergic mechanisms in pain and analgesia. Trends Pharmacol. Sci. 10 (suppl.), 75–78.

    Google Scholar 

  • Heisenberg, M., Borst, A., Wagner, S. and Byers, D. (1985) Drosophila mushroom body mutants are deficient in olfactory learning. J. Neurogenet. 2, 11–30.

    Google Scholar 

  • Hermans-Borgmeyer, I., Zopf, D., Ryseck, R.-P., Hovemann, B., Betz, H. and Gundelfinger, E. D. (1986) Primary structure of a developmentally regulated nicotinic acetylcholine receptor protein from Drosophila. EM BO J. 5, 1503–1508.

    Google Scholar 

  • Hibert, M. F., Trumpp-Kallmeyer, S., Bruinvels, A. and Hoflack, J. (1991) Three-dimensional models of neurotransmitter G-binding protein-coupled receptors. Mol. Pharmacol. 40, 8–15.

    Google Scholar 

  • Hillman, G. R., Ewert, A., Westerfield, L. and Grim, O. (1983) Effects of selected cholinergic and anticholinergic drugs on Brugia malayi (nematoda). Comp. Biochem. Physiol. 74C, 299–301.

    Google Scholar 

  • Hirashima, A., Oyama, K. and Eto, M. (1991) Effects of a muscarinic agonist on octopamine-stimulated cyclic AMP production in American cockroach (Periplaneta americana) nerve cords. Agric. Biol. Chem. 55, 2547–2552.

    Google Scholar 

  • Huang, Z. and Knowles, C. O. (1990a) Properties of a quinuclidinyl benzilate binding component in the bulb mite. Comp. Biochem. Physiol. 95C, 71–77.

    Google Scholar 

  • Huang, Z. and Knowles, C. O. (1990b) Nicotinic and muscarinic cholinergic receptors in honey bee (Apis mellifera) brain. Comp. Biochem Physiol. 97C, 275–281.

    Google Scholar 

  • Hue, B., Lapied, B. and Malecot, C. O. (1989) Do presynaptic muscarinic receptors regulate acetylcholine release in the central nervous system of the cockroach Periplaneta americana, J. exp. Biol. 142, 447–451.

    Google Scholar 

  • Hulme, E. C., Birdsall, N. J. M. and Buckley, N. J. (1990) Muscarinic receptor subtypes. Annu. Rev. Pharmacol. Toxicol. 30, 633–673.

    Google Scholar 

  • Jones, S. W. and Sumikawa, K. (1981) Quinuclidinyl benzilate binding in house fly heads and rat brain. J. Neurochem. 36, 454–459.

    Google Scholar 

  • Jones, S. V. P., Barker, J. L., Buckley, N. J., Bonner, T. I., Collins, R. M. and Brann, M. R. (1988) Cloned muscarinic receptor subtypes expressed in A9 L cells differ in their coupling to electrical responses. Mol. Pharmacol. 34, 421–426.

    Google Scholar 

  • Jones, S. V. P., Barker, J. L., Buckley, N. J., Bonner, T. I., Collins, R. M. and Brann, M. R. (1989) Physiological comparison of cloned muscarinic receptor subtypes expressed in CHO cells. Trends Pharmacol. Sci. 10 (suppl.), 116–117.

    Google Scholar 

  • Karnik, S. S., Sakmann, J. P., Chen, H. B. and Khorana, H. G. (1988). Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proc. Natl. Acad. Sci. USA 85, 8459–8463.

    Google Scholar 

  • Kehoe, J. S. (1972) Three acetylcholine receptors in Aplysia neurones. J. Physiol. 225, 115–146.

    Google Scholar 

  • Kerkut, G. A., Pitman, R. M and Walker, R. J. (1969) Iontophoretic application of acetylcholine and GAB A onto insect central neurones. Comp. Biochem. Physiol. 31, 611–633.

    Google Scholar 

  • Kerkut, G. A. and Walker, R. J. (1967) The actions of acetylcholine, dopamine and 5HT on spontaneous activity of the cells of Retzius in the leech, Hirudo medicinalis. Br. J. Pharmacol. 30, 644–654.

    Google Scholar 

  • Kim, D., Lewis, D. L., Graziadei, L., Neer, E. J., Bar-Sagi, D. and Clapham, D. E. (1989) G-protein βγ subunits activate the cardiac muscarinic K +-channel via phospholipase A2. Nature 337, 557–560.

    Google Scholar 

  • Kimble, M., Dittman, R. W. and Raff, E. C. (1990) The β3-tubulin gene of Drosophila melanogaster is essential for viability and fertility. Genetics 126, 991–1005.

    Google Scholar 

  • King, M. S., Delaney, K. and Gelperin, A. (1987) Acetylcholine activates cerebral interneurons and feeding motor program in Limax maximus. J. Neurobiol. 18, 509–530.

    Google Scholar 

  • Knipper, M. and Breer, H. (1988) Subtypes of muscarinic receptors in insect nervous system. Comp. Biochem. Physiol. 90C, 275–280.

    Google Scholar 

  • Knipper, M. and Breer, H. (1989) Muscarinic receptors modulating acetylcholine release from insect synaptosomes. Comp. Biochem. Physiol. 93C, 287–292.

    Google Scholar 

  • Kornfeld, R. and Kornfeld, S. (1985) Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664.

    Google Scholar 

  • Kubo, T., Fukuda, K., Mikami, A., Maeda, A., Takahashi, H., Mishina, M., Haga, T., Haga, K., Matsuo, H., Hirose, T. and Numa, S. (1986a) Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor. Nature 323, 411–416.

    Google Scholar 

  • Kubo, T., Maeda, A., Sugimoto, K., Akiba, I., Mikami, A., Takahashi, H., Haga, T., Haga, K., Ichiyama, A., Kangawa, K., Matsuo, H., Hirose, T. and Numa, S. (1986b) Primary structure of porcine cardiac muscarinic acetylcholine receptor deduced from the cDNA sequence. FEBS Lett. 209, 367–372.

    Google Scholar 

  • Kubo, T., Bujo, H., Akiba, I., Nakai, J., Mishina, M. and Numa, S. (1988) Location of a region of the muscarinic acetylcholine receptor involved in selective effector coupling. FEBS Lett. 241, 119–125.

    Google Scholar 

  • Kurtenbach, E., Curtis, C. A. M., Pedder, E. K., Aitken, A., Harris, A. C. M. and Hulme, E. C. (1990) Muscarinic acetylcholine receptors. Peptide sequencing identifies residues involved in antagonist binding and disulfide bond formation. J. Biol. Chem. 265, 13,702–13, 708.

    Google Scholar 

  • Lai, J., Smith, T. L., Mei, L., Ikeda, M., Fujiwara, Y., Gomez, J., Halonen, M., Roeske, W. R. and Yamamura, H. I. (1991). The molecular properties of the Ml muscarinic receptor and its regulation of cytosolic calcium in a eukaryotic gene expression system. Adv. exp. Med. Biol. 287, 313–330.

    Google Scholar 

  • Lapied, B., LeCorronc, H. and Hue, B. (1990). Sensitive nicotinic and mixed nicotinic-muscarinic receptors in insect neurosecretory cells. Brain Res. 533, 132–136.

    Google Scholar 

  • Lapied, B., Tribut, F. and Hue, B. Muscarinic subtype receptors in cockroach single isolated adult DUM neurons. (Submitted).

    Google Scholar 

  • Lechleiter, J., Hellmiss, R., Duerson, K., Ennulat, D., David, N., Clapham, D. and Peralta, E. (1990). Distinct sequence elements control the specificity of G protein activation by muscarinic acetylcholine receptor sybtypes. EM BO J. 9, 4381–4390.

    Google Scholar 

  • Lechleiter, J., Girard, S., Clapham, D. and Peralta, E. (1991). Subcellular patterns of calcium release determined by G protein-specific residues of muscarinic receptors. Nature 350, 505–508.

    Google Scholar 

  • LeCorronc, H., Lapied, B. and Hue, B. (1991). M2-like presynaptic receptors modulate acetylcholine release in the cockroach (Periplaneta americana) central nervous system. J. Insect Physiol. 37, 647–652.

    Google Scholar 

  • Lentz, T. L. and Barrnett, R. J. (1963). The role of the nervous system in regenerating Hydra: The effect of pharmacological agents. J. exp. Zool. 154, 305–327.

    Google Scholar 

  • Levin, L. R., Han, P. L., Hwang, P. M., Feinstein, P. G., Davis, R. L. and Reed, R. R. (1992) The Drosophila learning and memory gene rutabaga encodes a Ca2+/calmodulin-responsive adenylyl cyclase. Cell 68, 479–489.

    Google Scholar 

  • Levine R. R. and Birdsall, N. J. M. (eds) (1989) Nomenclature for muscarinic receptor subtypes recommended by symposium. Trends Pharmacol. Sci. 10 (suppl.), V II.

    Google Scholar 

  • Levitan, H. and Tauc, L. (1972), Acetylcholine receptors: Topographic distribution and pharmacological properties of two receptor types on a single molluscan neurone. J. Physiol. 222, 537–558.

    Google Scholar 

  • Liao, C-F, Themmen, A. P. N., Joho, R., Barberis, C., Birnbaumer, M. and Birnbaumer, L. (1989) Molecular cloning and expression of a fifth muscarinic acetylcholine receptor. J. Biol Chem. 264, 7328–7337.

    Google Scholar 

  • Liles, W. C and Nathanson, N. M. (1986) Regulation of neuronal muscarinic receptor number by protein glycosylation. J. Neurochem. 46, 85–95.

    Google Scholar 

  • Lindsley, D. L. and Grell, E. H. (1968) Genetic variations of Drosophila melanogaster. Carnegie Institution of Washington, Publication No. 627.

    Google Scholar 

  • Loughney, K., Kreber, R. and Ganetsky, B. (1989) Molecular analysis of the para locus, a sodium channel gene in Drosophila. Cell 58, 1143–1154.

    Google Scholar 

  • Lummis, S. C. R. and Sattelle, D. B. (1985) Binding of N-[propionyl-3H]propionylated α-bungarotoxin and L-[benzilic-4,4’-3H]quinuclidinyl benzilate to CNS extracts of the cockroach Periplaneta americana. Comp. Biochem. Physiol 80C, 75–83.

    Google Scholar 

  • Lummis, S. C. R. and Sattelle, D. B. (1986) [N-methyl-3H]Scopolamine binding sites in the central nervous system of the cockroach Periplaneta americana. Archs. Insect Biochem. Physiol 3, 339–347.

    Google Scholar 

  • Lummis, S. C. R., Sattelle, D. B. and Ellory, J. C. (1984) Molecular weight estimates of insect cholinergic receptors by radiation inactivation. Neurosci. Lett. 44, 7–12.

    Google Scholar 

  • Maclagan, J. and Barnes, P. J. (1989) Muscarinic pharmacology of the airways. Trends Pharmacol Sci. 10 (suppl.), 88–91.

    Google Scholar 

  • Mandelshtam, Y. E. (1973) Pharmacology of cholinergic systems in arthropods, in: Comparative Pharmacology, pp. 81–110. Ed. M. J. Michelson. Pergamon, NY.

    Google Scholar 

  • Marder, E. (1974) Acetylcholine as an excitatory neuromuscular transmitter in the stomatogastric system of the lobster. Nature 251, 730–731.

    Google Scholar 

  • Marder, E. and Eisen, J. S. (1984) Transmitter identification of pyloric neurons: Electrically coupled neurons use different transmitters. J. Neurophys. 51, 1345–1361.

    Google Scholar 

  • Marder, E. and Paupardin-Tritsch, D. (1978) The pharmacological properties of some crustacean neuronal acetylcholine, Îł-aminobutyric acid, and L-glutamate responses. J. Physiol 280, 213–236.

    Google Scholar 

  • McPherson, G. A. (1985) Analysis of radioligand binding experiments: A collection of computer programs for the IBM PC. J. Pharmacol Methods. 14, 213–228.

    Google Scholar 

  • Mei, L., Roeske, W. R. and Yamamura, H. I. (1989) Molecular pharmacology of muscarinic receptor heterogeneity. Life Sci. 45, 1831–1851.

    Google Scholar 

  • Mendes, E. G. and deFreitas, J. C. (1984) The responses of isolated preparations of Bunodosoma caissarum (Correa, 1964) (cnidaria, anthozoa) to drugs. Comp. Biochem. Physiol 79C, 375–382.

    Google Scholar 

  • Meyer, M. R. and Edwards, J. S. (1980) Muscarinic cholinergic binding sites in an orthopteran central nervous system. J. Neurobiol. 11, 215–219.

    Google Scholar 

  • Meyer, M. R. and Reddy, G. R. (1985) Muscarinic and nicotinic cholinergic binding sites in the terminal abdominal ganglion of the cricket (Acheta domesticus). J. Neurochem. 45, 1101–1112.

    Google Scholar 

  • Meyer, M. R., Reddy, G. R. and Edwards, J. S. (1986) Metabolic changes in deafferented central neurons of an insect Acheta domesticus. II. Effects on cholinergic binding sites and acetylcholinesterase. J. Neurosci. 6, 1676–1684.

    Google Scholar 

  • Michelson, M. J. (1973) Pharmacology of cholinergic systems in some other phyla, in: Comparative Pharmacology, pp. 191–227. Ed. M. J. Michelson. Pergamon, NY.

    Google Scholar 

  • Molinoff, P. B., Wolfe, B. B. and Weiland, G. A. (1981) Quantitative analysis of drug receptor interactions. II. Determination of the properties of receptor subtypes. Life Sci. 29, 427–443.

    Google Scholar 

  • Mpitsos, G. J., Murray, T. F., Creech, H. C. and Barker, D. L. (1988) Muscarinic antagonist enhances one-trial food-aversion learning in the mollusc Pleurobranchea. Brain Res. Bull. 21, 169–179.

    Google Scholar 

  • Munson, P. J. and Rodbard, D. (1980) LIGAND: A versatile computerized approach for the characterization of ligand binding systems. Anal. Biochem. 107, 220–239.

    Google Scholar 

  • Murphy, B. F. and Larimer, J. L. (1991) The effect of various neurotransmitters and some of their agonists and antagonists on the crayfish abdominal positioning system. Comp. Biochem. Physiol. 100C, 687–698.

    Google Scholar 

  • Murray, T. F. and Mpitsos, G. J. (1988) Evidence for heterogeneity of muscarinic receptors in the mollusc Pleurobranchaea. Brain Res. Bull. 21, 181–190.

    Google Scholar 

  • Murray, T. F., Mpitsos, G. J., Siebenaller, J. F. and Barker, D. L. (1985). Stereoselective L-[3H-]quinuclidinyl benzilate-binding sites in nervous tissue of Aplysia californica: Evidence for muscarinic receptors. J. Neurosci. 5, 3184–3188.

    Google Scholar 

  • Nagle, G. T. and Greenberg, M. J. (1982) Effects of biogenic amines, FMRFamide and acetylcholine on the radula protractor muscle of a whelk. Comp. Biochem. Physiol. 73C, 17–21.

    Google Scholar 

  • Nathanson, N. M. (1987) Molecular properties of the muscarinic acetylcholine receptor. Annu. Rev. Neurosci. 10, 195–236.

    Google Scholar 

  • Nighorn, A., Healy, M. J. and Davis, R. L. (1991) The cyclic AMP phosphodiesterase encoded by the Drosophila dunce gene is concentrated in the mushroom body neuropil. Neuron 6, 455–467.

    Google Scholar 

  • Novotny, E. A. and Brann, M. R. (1989) Agonist pharmacology of cloned muscarinic receptors. Trends Pharmacol. Sci. 10 (suppl.), 116.

    Google Scholar 

  • O’Dowd, B. F., Hnatowich, M., Caron, M. G., Lefkowitz, R. J. and Bouvier, M. (1989) Palmitoylation of the human β2-adrenergic receptor. J. Biol. Chem. 264, 7564–7569.

    Google Scholar 

  • Onai, T., Fitzgerald, M. G., Arakawa, S., Gocayne, J. D., Urquhart, D. A., Hall, L. M., Fraser, C. M., McCombie, W. R. and Venter, J. C. (1989) Cloning, sequence analysis and chromosome localization of a Drosophila muscarinic acetylcholine receptor. FEBS Lett. 255, 219–225.

    Google Scholar 

  • Orr, G. L., Orr, N. and Hollingworth, R. M. (1990) Localization and pharmacological characterization of nicotinic-cholinergic binding sites in cockroach brain using α- and neuronal bungarotoxin. Insect Biochem. 20, 557–566.

    Google Scholar 

  • Orr, G. L., Orr, N. and Hollingworth, R. M. (1991) Distribution and pharmacological characterization of muscarinic-cholinergic receptors in the cockroach brain. Archs. Insect Biochem. Physiol. 16, 107–122.

    Google Scholar 

  • Ovchinnikov, Y. A., Abdulaev, N. G. and Bogachuk, A. S. (1988) Two adjacent cysteine residues in the C-terminal cytoplasmic fragment of bovine rhodopsin are palmitoylated. FEBS Lett. 230, 1–5.

    Google Scholar 

  • Peralta, E. G., Ashkenazi, A., Winslow, J. W., Smith, D. H., Ramachandran, J. and Capon, D. J. (1987a) Distinct primary structures, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. EM BO J. 6, 3923–3929.

    Google Scholar 

  • Peralta, E. G., Winslow, J. W., Peterson, G. L., Smith, D. H., Ashkenazi, A., Ramachandran, J., Schimerlik, M. I. and Capon, D. J. (1987b). Primary structure and biochemical properties of an M2 muscarinic receptor. Science 236, 600–606.

    Google Scholar 

  • Peralta, E. G., Ashkenazi, A., Winslow, J. W., Ramachandran, J. and Capon, D. J. (1988) Differential regulation of PI hydrolysis and adenyl cyclase by muscarinic receptor subtypes. Nature 334, 434–437.

    Google Scholar 

  • Probst, W. C., Snyder, L. A., Schuster, D. I., Brosius, J. and Sealfon, S. C. (1992) Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol. 11, 1–20.

    Google Scholar 

  • Quirion, R., Aubert, I., Lapchak, P. A., Schaum, R. P., Teolis, S., Gauthier, S. and Araujo, D. M. (1989) Muscarinic receptor subtypes in human neurodegenerative disorders: Focus on Alzheimer’s disease. Trends Pharmacol. Sci. 10 (suppl.), 80–84.

    Google Scholar 

  • Richards, M. H. (1991) Pharmacology and second messenger interactions of cloned muscarinic receptors. Biochem. Pharmacol. 42, 1645–1653.

    Google Scholar 

  • Rozhkova, E. K. (1973) Pharmacology of cholinergic systems in annelids, in: Comparative Pharmacology, pp. 169–189. Ed. M. J. Michelson. Pergamon, NY.

    Google Scholar 

  • Rubin, G. M. (1988) Drosophila melanogaster as an experimental organism. Science 240, 1453–1459.

    Google Scholar 

  • Salvaterra, P. M. and Foders, R. M. (1979) [125I]2α-Bungarotoxin and [3H]quinuclidinyl benzilate binding in central nervous system of different species. J. Neurochem. 32, 1509–1517.

    Google Scholar 

  • Sattelle, D. B. (1980) Acetylcholine receptors of insects. Adv. Insect Physiol. 15, 215–315.

    Google Scholar 

  • Sawruk, E., Schloss, P. Betz, H. and Schmitt, B. (1990) Heterogeneity of Drosophila nicotinic acetylcholine receptors: SAD, a novel developmentally regulated alpha-subunit. EM BO J. 9, 2671–2677.

    Google Scholar 

  • Scemes, E. and Mendes, E. G. (1986) Cholinergic mechanism in Liriope tetraphylla (cnidaria, hydrazoa). Comp. Biochem. Physiol. 83C, 171–178.

    Google Scholar 

  • Schildberger, K. (1984) Multimodal interneurons in the cricket brain: Properties of identified extrinsic mushroom body cells. J. Comp. Physiol. A 154, 71–79.

    Google Scholar 

  • Schmidt-Nielsen, B. K. Gepner, J. I., Teng, N. N. H. and Hall, L. M. (1977) Characterization of an α-bungarotoxin binding component from Drosophila melanogaster. J. Neurochem. 29, 1013–1029.

    Google Scholar 

  • Shankland, D. L., Rose, J. A. and Donniger, C. (1971) The cholinergic nature of the cercal nerve-giant fibre synapse in the sixth abdominal ganglion of the American cockroach Periplaneta americana. J. Neurobiol. 2, 247–262.

    Google Scholar 

  • Shapiro, R. A., Scherer, N. M., Habecker, B. A., Subers, E. M. and Nathanson, N. M. (1988) Isolation, sequence and functional expression of the mouse Ml muscarinic acetylcholine receptor gene. J. Biol. Chem. 263, 18,397–18, 403.

    Google Scholar 

  • Shapiro, R. A., Wakimoto, B. T., Subers, E. B. and Nathanson, N. M. (1989) Characterization and functional expression in mammalian cells of genomic and cDNA clones encoding a Drosophila muscarinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 80, 9039–9043.

    Google Scholar 

  • Simon, M. A., Bowtell, D. D. L., Dodson, G. S., Laverty, T. R. and Rubin, G. M. (1991) Rasl and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell. 67, 701–716.

    Google Scholar 

  • Singer, R. H. (1964) The effect of neuropharmacological drugs on the light response of Hydra piradi. Anat. Rec. 148, 402–403.

    Google Scholar 

  • Squire, L. R. and Davis, H. P. (1981) The pharmacology of memory: A neurobiological perspective. Annu. Rev. Pharmacol. Toxicol. 21, 323–363.

    Google Scholar 

  • Steinbach, J. H. and Ifune, C. (1989) How many kinds of nicotinic acetylcholine receptor are there? Trends Neurosci. 12, 3–6.

    Google Scholar 

  • Strausfeld, N. J. (1976) Atlas of an Insect Brain. Springer-Verlag, NY.

    Google Scholar 

  • Suzuki, D. T., Grigliatti, T. and Williamson, R. (1971) Temperature-sensitive mutations in Drosophila melanogaster. VII. A mutation (para ts) causing reversible adult paralysis. Proc. Natl. Acad. Sci. USA 68, 890–893.

    Google Scholar 

  • Tietje, K. M., Goldman, P. S. and Nathanson, N. M (1990) Cloning and functional analysis of a gene encoding a novel muscarinic acetylcholine receptor expressed in chick heart and brain. J. Biol. Chem. 265, 2828–2834.

    Google Scholar 

  • Trimmer, B. A. and Berridge, M. J. (1985) Inositol phosphates in the insect nervous system. Insect Biochem. 15, 811–815.

    Google Scholar 

  • Trimmer, B. A. and Weeks, J. C. (1989) Effects of nicotinic and muscarinic agents on an identified motoneurone and its direct afferent inputs in larval Manduca sexta. J. exp. Biol. 144, 303–337.

    Google Scholar 

  • Trimmer, B. A. and Weeks, J. C. (1991) Activity dependent induction of facilitation, depression and post-tetanic potentiation at an insect central synapse. J. Comp. Physiol. A 168, 27–43.

    Google Scholar 

  • Tully, T. and Quinn, W. G. (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster. J. Comp. Physiol. A 157, 263–277.

    Google Scholar 

  • vanKoppen, C. J. and Nathanson, N. M. (1991) The cysteine residue in the carboxyl-terminal domain of the m2 muscarinic acetylcholine receptor is not required for receptor-mediated inhibition of adenylate cyclase. J. Neurochem. 57, 1873–1877.

    Google Scholar 

  • Venter, J. C., Eddy, B., Hall, L. M. and Fraser, C. M. (1984) Monoclonal antibodies detect the conservation of muscarinic cholinergic receptor structure from Drosophila to human brain and detect possible structural homology with a!-adrenergic receptors. Proc. Natl. Acad. Sci. USA 81, 272–276.

    Google Scholar 

  • Venter, J. C., diPorzio, U., Robinson, D. A. Shreeve, S. M., Lai, J., Kerlavage, A. R., Fracek, Jr., S. P., Lentes, K.-U. and Fraser, C. M. (1988) Evolution of neurotransmitter receptor systems. Progr. Neurobiol. 30, 105–169.

    Google Scholar 

  • Venter, J. C., Fraser, C. M., Kerlavage, A. R. and Buck, M. A. (1989) Molecular biology of adrenergic and muscarinic cholinergic receptors. Biochem. Pharmacol. 38, 1197–1208.

    Google Scholar 

  • Wadsworth, S. C., Rosenthal, L. S., Kammermeyer, K. L., Potter, M. B. and Nelson, D. J. (1988) Expression of a Drosophila melanogaster acetylcholine receptor related gene in the central nervous system. Mol. Cell Biol. 8, 778–785.

    Google Scholar 

  • Walker, R. J. and Kerkut, G. A. (1977) The actions of nicotinic and muscarinic cholinomimetics and a series of choline esters on two identified neurones in the brain of Helix aspersa. Comp. Biochem. Physiol. 56C, 179–187.

    Google Scholar 

  • Walter, P., Gilmore, R. and Blobel, G. (1984) Protein translocation across the endoplasmic reticulum. Cell 38, 5–8.

    Google Scholar 

  • Wess, J., Brann, M. R. and Bonner, T. I. (1989) Identification of a small intracellular region of the muscarinic m3 receptor as a determinant of selective coupling to PI turnover. FEBS Lett. 258, 133–136.

    Google Scholar 

  • Wess, J., Gdula, D. and Brann, M. R. (1991) Site-directed mutagenesis of the m3 muscarinic receptor: Identification of a series of threonine and tyrosine residues involved in agonist but not antagonist binding. EM BO J. 10, 3729–3734.

    Google Scholar 

  • Whyte, J. and Lunt, G. G. (1986) The influence of guanine nucleotides on muscarinic receptor binding in the locust supra-oesophageal ganglion. Trans. Biochem. Soc. 14, 690–691.

    Google Scholar 

  • Witte, O. W., Speckmann, E.-J. and Walden, J. (1985) Acetylcholine responses of identified neurons in Helix pomatia. II. Pharmacological properties of acetylcholine response. Comp. Biochem. Physiol. 80C, 25–35.

    Google Scholar 

  • Wolfe, B. B. (1989) Subtypes of muscarinic cholinergic receptors: Ligand binding, functional studies, and cloning, in: The Muscarinic Receptor, pp. 125–150. Ed. J. H. Brown. The Humana Press. Clifton. NJ.

    Google Scholar 

  • Woodruff, G. N., Walker, R. J. and Newton, L. C. (1971). The actions of some muscarinic and nicotinic agonists on the retzius cells of the leech. Comp. gen. Pharmacol. 2, 106–117.

    Google Scholar 

  • Yamamura, H. I. and Snyder, S. H. (1974) Muscarinic cholinergic binding in rat brain. Proc. Natl. Acad. Sci. USA 71, 1725–1729.

    Google Scholar 

  • Zeimal, E. V. and Vulfius, E. A. (1973). Pharmacology of cholinergic systems in molluscs, in: Comparative Pharmacology, pp. 111–168. Ed. M. J. Michelson. Pergamon, NY.

    Google Scholar 

  • Zheng, W. Z., Feng, G. F., Eberl, D. F., Triggle, D. J. and Hall, L. M. (1992) Cloning and characterization of a novel α1 subunit of Drosophila Ca2+ channel. Soc. Neurosci. Abstr. 19, 1138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Hannan, F., Hall, L.M. (1993). Muscarinic acetylcholine receptors in invertebrates: Comparisons with homologous receptors from vertebrates. In: Pichon, Y. (eds) Comparative Molecular Neurobiology. EXS, vol 63. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7265-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7265-2_6

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7267-6

  • Online ISBN: 978-3-0348-7265-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics