Skip to main content

Summary

Human cytochrome P450 enzymes involved in the metabolism of exogenous and endogenous compounds are intensively studied. The regulation of cytochromes P450 by transcriptional activation via the Ah receptor (CYP1A) and peroxisome proliferator activated receptor (CYP4A) is increasingly understood at the molecular level, in contrast to induction by phénobarbital and glucocorticoids. The tissue-specific and developmental regulation of P450s by transcription factors such as HNF-Iα, DBP, C/EBP and Spl is complex. Individual variation of the activity of these enzymes is markedly influenced by common genetic polymorphisms, with numerous loss of function or decreased function and even increased function alleles of P450 genes. There is evidence for an important role of P450 enzymes in the activation of carcinogens. Variable extrahepatic expression of human P450s may contribute to individual cancer risk. Progress has also been made in the understanding of the role of P4507α (cholesterol 7α hydroxylase) in cholesterol homeostasis.

Human cytochrome P450 (P450) enzymes are the subject of intensive research because of their obvious relevance to drug therapy and toxicity and their role in chemical carcinogenesis. Moreover, the biotransformation of numerous endogenous compounds such as steroids, retinoids, eicosanoids, and other endogenous compounds is catalyzed by P450s. The super-family of P450 genes comprises over 300 genes in various species. Of these, over 40 human P450 enzymes are known and classified within the 13 mammalian gene families.

From the Symposium “Human Cytochromes P450: Regulation and Functional Variability”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liu SY, Gonzalez FJ. Role of the liver-enriched transcription factor HNF-1α in expression of the CYP2E1 gene. DNA Cell Biol. 1995; 14: 285–293.

    Article  PubMed  CAS  Google Scholar 

  2. Yano M, Favey E, Gonzalez FJ. Role of the liver-enriched transcription factor DBP in expression of the cytochrome P450 CYP2C6 gene. Mol. Cell. Biol. 1992; 12: 2847–2854.

    PubMed  CAS  Google Scholar 

  3. Lee YH, Alberta JA, Gonzalez FJ, Wasman DJ. Multiple, functional DBP-binding sites on the promoter of the cholesteriol 7α-hydroxylase P450 gene CYP7: proposed role in diurnal regulation of liver gene expression. J. Biol. Chem. 1994; 269: 14681–14689.

    PubMed  CAS  Google Scholar 

  4. Lee YH, Yano M, Liu SY, Matsunaga E, Johnson PF, Gonzalez FJ. A novel cis-acting element controlling the rat CYP2D5 gene requiring cooperativity between C/EBPβ, and an Sp1 factor. Mol. Cell. Biol. 1994; 14: 1383–1394.

    Article  PubMed  CAS  Google Scholar 

  5. Meyer UA. Pharmacogenetics: The slow, the rapid, and the ultrarapid. Proc. Natl. Acad. Sci. USA 1994; 91: 1983–1984.

    Article  PubMed  CAS  Google Scholar 

  6. Broly F, Meyer UA. Debrisoquine oxidation polymorphism: phenotypic consequences of a 3-base-pair deletion in exon 5 of the CYP2D6 gene. Pharmacogenetics 1993; 3: 256–263.

    Article  Google Scholar 

  7. Johansson I, Lundqvist E, Bertilsson L, Dahl M-L, Sjöqvist F, Ingelman-Sundberg M. Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc Natl Acad Sci USA 1993; 90: 11825–11829.

    Article  PubMed  CAS  Google Scholar 

  8. DeMorais SMF, Wilkinson GR, Blaisdell J, Nakamura K, Meyer UA, Goldstein JA. The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J. Biol. Chem. 1994; 269: 15419–15422.

    CAS  Google Scholar 

  9. DeMorais SMF, Wilkinson GR, Blaisel J, Meyer UA, Nakamura K, Goldstein JA. Identification of a new genetic defect responsible for the polymorphism of S-mephenytoin metabolism in Japanese. Mol. Pharmacol. 1994; 46: 594–598.

    CAS  Google Scholar 

  10. Guengerich FP, Shimada T. Oxidation of toxic and carcinogenic chemicals by human cytochrome P450 enzymes. Chem. Res. Toxicol. 1991; 4: 391–407.

    Article  PubMed  CAS  Google Scholar 

  11. Eaton DL, Gallagher EP. Mechanism of aflatoxin carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 1994; 34: 135–172.

    Article  PubMed  CAS  Google Scholar 

  12. Raney KD, Shimada T, Kim DH, Groopman JD, Harris TM, Guengerich FP. Oxidation of aflatoxin B1 and related dihydrofurans by human liver microsomes: significance of aflatoxin Q1 as a detoxication product. Chem. Res. Toxicol. 1992; 5: 202–210.

    Article  PubMed  CAS  Google Scholar 

  13. Raney KD, Coles B, Guengerich FP, Harris TM. The endo 8,9-epoxide of aflatoxin B1: a new metabolite. Chem. Res. Toxicol. 1992; 5: 333–335.

    Article  PubMed  CAS  Google Scholar 

  14. Thier R, Pemble SE, Taylor JB, Humphreys WG, Persmark M, Ketterer B, Guengerich FP. Expression of rat gluthathione S-transferase 5–5 in Salmonella typhimurium TA 1535 leads to base-pair mutations upon exposure to dihalomethanes. Proc. Natl. Acad. Sci. USA 1993; 90: 8576–8580.

    Article  PubMed  CAS  Google Scholar 

  15. McKinnon RA, Burgess WM, Gonzalez FJ, McManus ME. Metabolic differences in colon mucosal cells. Mutat Res. 1993; 290: 27–33.

    Article  PubMed  CAS  Google Scholar 

  16. McKinnon RA, Burgess WM, Hall P de la M, Roberts-Thomson SJ, Gonzalez FJ, McManus ME. Characterization of CYP3A gene subfamily expression in human gastrointestinal tissues. Gut. 1995; 36: 259–267.

    Article  PubMed  CAS  Google Scholar 

  17. McKinnon RA, Burgess WM, Gonzalez FJ, Gasser R, McManus ME. Species-specific expression of CYP4B1 in rabbit and human gastrointestinal tissues. Pharmacogenetics. 1994; 4: 260–270.

    Article  PubMed  CAS  Google Scholar 

  18. Noshiro M, Nishimoto M, Okuda K. Rat liver cholesterol 7α-hydroxylase J. Biol. Chem. 1990; 265: 10036–10041.

    PubMed  CAS  Google Scholar 

  19. Nishimoto M, Noshiro M, Okuda K-I. Structure of the gene encoding human liver cholesterol 7α-hydroxylase. Biochem. Biophys. Acta 1993; 1172: 147–150.

    PubMed  CAS  Google Scholar 

  20. Maeda Y-I, Eggertsen G, Nyberg B, Setoguchi T, Okuda K-I., Einarsson, et al. Immunological determination of human cholesterol 7α-hydroxylase. Eur. J. Biochem. 1995; 228: 144–148.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Meyer, U.A., Gonzalez, F.J., Peter Guengerich, F., McManus, M.E., Okuda, KI. (1995). Human Cytochromes P450: Regulation and Functional Variability. In: Cuello, A.C., Collier, B. (eds) Pharmacological Sciences: Perspectives for Research and Therapy in the Late 1990s. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7218-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7218-8_15

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7220-1

  • Online ISBN: 978-3-0348-7218-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics