Skip to main content

Aspects of Asperity—Surface Interaction and Surface Damage of Rocks during Experimental Frictional Sliding

  • Chapter
Rock Friction and Earthquake Prediction

Part of the book series: Contributions to Current Research in Geophysics (CCRG) ((CCRG,volume 6))

  • 439 Accesses

Summary

Mechanisms for the dissipation of energy during the frictional sliding of rocks includes brittle fracture, plastic deformation, frictional heating, and elastic distortion. The first three energy sinks are manifested by surface damage during frictional sliding. Normal load, temperature, and the velocity of the sliding surfaces as well as surface roughness and hardness all influence the nature of surface damage which includes the generation of structures such as wear grooves, gouge, and welded particles.

Lamont—Doherty Geological Observatory Contribution No. 2620.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Archard, J. F. (1959), The temperature of rubbing surfaces, Wear 2, 438–455.

    Article  Google Scholar 

  • Arnold, G. W. (1952), Surface structure of quartz crystals, M.R.L. Rpt. 4965, 15 pp.

    Google Scholar 

  • Bowden, F. P. and Thomas, P. H. (1954), The surface temperature of sliding solids, Roy. Soc. Lond. Proc. 223, 29–39.

    Article  Google Scholar 

  • Byerlee, J. D. (1967a), Theory of friction based on brittle fracture, Jour. Appl. Phys. 38, 2928–2934.

    Article  Google Scholar 

  • Byerlee, J. D. (1967b), Frictional characteristics of granite under high confining pressure, J. Geophys. Res. 72, 3639–3648.

    Article  Google Scholar 

  • Byerlee, J. D. (1970), Static and kinetic friction of granite at high normal stress, Int. J. Rock Mech. Min. Sci. 7, 577–582.

    Article  Google Scholar 

  • Byerlee, J. D., Mjachkin, V., Summers, R. and Voevoda, O. (1977), Structures developed in fault gouge during stable sliding and stick-slip, preprint.

    Google Scholar 

  • Byerlee, J. and Summers, R. (1975), The effect of fault gouge on fault stability, preprint.

    Google Scholar 

  • Coulson, J. H. (1970), The effects of surface roughness on the shear strength of joints in rock, Technical Report MRD-2-70, Missouri River Division, Corps of Engineers, Omaha, Neb., 283 pp.

    Google Scholar 

  • Eirich, F. R. and Tabor, D. (1948), Collisions through liquid films, Proc. Cambridge Phil. Soc. 44, 566–580.

    Article  Google Scholar 

  • Engelder, J. T. (1974), Microscopic wear-grooves on slickensides: Indicators of paleoseismicity, J. Geophys. Res. 79, 4387–4392.

    Article  Google Scholar 

  • Engelder, J. T., Effect of scratch hardness on frictional wear and stick-slip of Westerly granite and Cheshire quartzite, in R. G. J. Strens (ed.), The Physics and Chemistry of Minerals and Rocks (Wiley, New York, 1976), 139–150.

    Google Scholar 

  • Engelder, J. T. and McKee, T. R. (1973), Electron microscopical study of indurated quartz gouges, Proc. Elect. Micro. Soc. Am. 31st Ann. Mtg., 214-215.

    Google Scholar 

  • Engelder, J. T., Logan, J. M. and Handin, J. (1975), The sliding characteristics of sandstone on quartz fault-gouge, Pure and Appl. Geophys. 113, 68–86.

    Google Scholar 

  • Engelder, J. T. and Scholz, C. H. (1976), The role of asperity indentation and ploughing in rock friction, 2: Influence of relative hardness and normal load, Int. Jour. Rock Mech. Min. Sci. 13, 155–163.

    Article  Google Scholar 

  • Friedman, M., Logan, J. M. and Rigert, J. A. (1974), Glass indurated quartz gouge in sliding-friction experiments on sandstones, Bull. Geol. Soc. Am. 85, 937–942.

    Article  Google Scholar 

  • Griggs, D. T. (1936), Deformation of rocks under high confining pressures: 1. Experiments at room temperature, J. Geology, 44, 541–577.

    Article  Google Scholar 

  • Humston, J. A., Experimental study of stick-slip in Tennessee sandstone, (M.S. thesis, 1972), Texas A and M University, College Station, 68 p.

    Google Scholar 

  • Ishlinski, A. Y. and Kreglskii, I. V. (1944), On stick-slip in friction, Zh. Teken. Fiz. 14, 276–282.

    Google Scholar 

  • Jackson, R. E. and Dunn, D. E. (1974), Experimental sliding friction and cataclasis of foliated rocks, Int. Jour. Rock Mech. Min. Sci. 11, 235–249.

    Article  Google Scholar 

  • Jaeger, J. C. (1942), Moving sources of heat and the temperature of sliding contacts, Proc. R. Soc. N.S.W. 76, 203–224.

    Google Scholar 

  • Jaeger, J. C. (1959), The frictional properties of joints in rocks, Geofis. Pura. Appl. 43, 148–158.

    Article  Google Scholar 

  • Jeffreys, H. (1942), On the mechanics of faulting, Geol. Mag. 79, 291–295.

    Article  Google Scholar 

  • Logan, J. M. and Friedman, M. (1976), Mechanical properties of rocks affecting earthquake prediction and control, 2nd Semi-annual Progress Report to the U.S. Geological Survey, Grant No. 14-08-0001-G-273 108 p.

    Google Scholar 

  • Logan, J. and Shimamoto, T. (1976), The influence of calcite gouge on the frictional sliding of Tennessee sandstone, EOS 57, 1011.

    Google Scholar 

  • Ohnaka, M. (1975), Frictional characteristics of typical rocks, J. Phys. Earth, 23, 87–112.

    Article  Google Scholar 

  • McKenzie, D. and Brune, J. N. (1972), Melting on fault planes during large earthquakes, Geophys. J. Roy. astr. Soc. 29, 65–78.

    Article  Google Scholar 

  • Scholz, C. H. and Engelder, J. T. (1976), The role of asperity indentation and ploughing in rock friction: 1. Asperity creep and stick-slip, Int. Jour. Rock Mech. Min. Sci. 13, 149–154.

    Article  Google Scholar 

  • Teufel, L. W., The measurement of contact areas and temperature during frictional sliding of Tennessee sandstone, (M.S. thesis, 1976) Texas A and M University, College Station, Texas, 65 p.

    Google Scholar 

  • Tullis, J. and Yund, R. A. (1977), Experimental deformation on dry Westerly granite, J. Geophys. Res., in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Engelder, T. (1978). Aspects of Asperity—Surface Interaction and Surface Damage of Rocks during Experimental Frictional Sliding. In: Byerlee, J.D., Wyss, M. (eds) Rock Friction and Earthquake Prediction. Contributions to Current Research in Geophysics (CCRG), vol 6. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7182-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7182-2_9

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-7184-6

  • Online ISBN: 978-3-0348-7182-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics