Skip to main content

Abstract

Experimental investigations on biological cell systems are in case of in vitro work often carried out with the help of cell suspensions, necessarily requiring a buffered, partly ‘inorganic’ medium. Such a procedure may of course involve a somewhat artifical situation, especially when living tissue regulation processes are the final goal of the description to be made. In this connection, one should realize that the dynamical basis of a purely phenomenological description of cell morphogenesis [1] as regulating its corresponding membrane transport does not conform to the same boundary conditions as those of cells incubated in a conditioning solution. However, in cell replication processes the code reading is always paralleled by a metabolic reaction catalyzed by the induced enzyme [2], so that an appreciable simplification can be reached by considering only a set of coupled metabolic reactions as driving forces of the biomembrane transport. Combining this with the idea that neurotransmitters may possess at least partially an inducer function and that their action can be either abolished or mimicked by drugs, the sections 2 and 3 of this paper have been outlined. The analytical method followed in these sections allows to reveal more specifically the action mechanism of some particular drugs, such as propranolol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. M. Turing, The Chemical Basis of Morphogenesis, Proc. R. Soc. 237B, 37 (1952).

    Google Scholar 

  2. C. Burstein, M. Cohen, A. Kepes and J. Monod, Rôle du lactose et de ses produits métaboliques dans l’induction de l’Opéron lactose chez Escherichia coli, Biochim. biophys. Acta 95, 634 (1965).

    Google Scholar 

  3. N. Minorsky, Théorie des Oscillations ( Gauthier-Villars, Paris 1967 ).

    Google Scholar 

  4. R. Lefever, Stabilité des structures dissipatives, Bull. Acad. R. Belg. 54, 712 (1968).

    Google Scholar 

  5. M. Herschkovitz-Kaufman and J. K. Platten, Chemical Instabilities and Localized Structures in Nonhomogeneous Media, Bull. Acad. R. Belg. 57, 26 (1971).

    Google Scholar 

  6. H. H. Ussing, Active Transport of Inorganic Ions, Symp. Soc. exp. Biol. 8, 407 (1954).

    Google Scholar 

  7. H. H. Ussing, Transport of Ions Across Cellular Membranes, Physiol. Rev. 29, 127–155 (1949).

    Google Scholar 

  8. C. Botre, M. T. Benignetti, A. Memoli, W. Dorst and N.H. van Boxel, Interaction of Ions with Biomembranes: A Carrier Model, Il Farmaco, Ed. Se. 26, 605 (1971).

    Google Scholar 

  9. R. Bloch, A. Finkelstein, O. Kedem and O. Vofsi, Metal-Ion Separation by Dialysis through Solvent Membranes, Ind. Eng. Chem. Proc. Design Dev. 6, 231 (1967).

    Google Scholar 

  10. K.H. Berneis, M. da Prada and A. Pletscher, Catecholamine Transport through a Lipid Barrier, Nature 248, 604 (1974).

    Google Scholar 

  11. T. Rosenberg and W. Wilbrandt, The Kinetics of Carrier Transport Inhibition, Exp. Cell Res. 27, 100 (1962).

    Google Scholar 

  12. B.B. Edelstein, Biochemical Model with Multiple Steady States and Hysteresis, J. theor. Biol. 29, 57 (1971).

    Google Scholar 

  13. E.E. Sel’kov, Self Oscillation in Glycolysis, a Simple Kinetic Model, Eur. J. Biochem. 4, 79 (1968).

    Google Scholar 

  14. M.A. Mitnick and S. Reichlin, Enzymatic Synthesis of Thyrotropin-Releasing Hor-mone (TRH) by Hypothalamic ‘TRH Synthetase’, Endocrinology 91, 1145 (1972).

    Google Scholar 

  15. M.A. Mitnick, C. Valverda and S. Reichlin, Enzymatic Synthesis of Prolactin- Releasing-Factor (PRF) by Rat Hypothalamic Tissue: Evidence for ‘PRF Synthetase’ Proc. Soc. exp. Biol. Med. 143, 418 (1973).

    Google Scholar 

  16. S. Reichlin and M.A. Mitnick, Enzymatic Synthesis of Growth Hormone Releasing Factor (GH-RF) by Rat Incubates and by Extracts of Rat and Porcine Hypotalamic Tissue, Proc. Soc. exp. Biol. Med. 142, 497 (1973).

    Google Scholar 

  17. D. Cherniavskii, L. Grigorov and M. Polyakova, Oscillatory Processes in Biological and Chemical Systems ( Nauka, Moscow 1967 ).

    Google Scholar 

  18. J.H. Freisheim and L. D’souza, Circular Dichroic Titration of Dihydrofolate Reductase with TPNH, Biochem. biophys. Commun. 45, 803 (1971).

    Google Scholar 

  19. A. Pletscher, M. da Prada and J. P. Tranzer, The Action of Calcium and Thrombin on Isolated 5-Hydroxytryptamine in Organelles of Blood Platelets, Experientia 24, 1202 (1968).

    Google Scholar 

  20. M.M. Levitov, I.P. Makarova and A.N. Methkov, The Effect of Carbohydrates on Neomycin Biosynthesis, Mikrobiologiia 38, 425 (1969).

    Google Scholar 

  21. E.E. Gordon and M. de Hartog, The Relationship between Cell Membrane Potassium Ion Transport and Glycolysis. The Effect of Ethacrynic Acid, J. gen. Physiol. 54, 650 (1969).

    Google Scholar 

  22. A. Pletscher, Isolated 5-Hydroxytryptamine Organelles of Rabbit Blood Platelets, Physiological Properties and Drug Induced Changes, Br. J. Pharmac. 34, 591 (1968).

    Google Scholar 

  23. E.E. Selkov, in: Analysis and Simulation of Biochemical System (Eds H.C. Hemker and B. Hess; North Holland American Elsevier, 1972 ).

    Google Scholar 

  24. W. Wilbrandt,Competing between Simultaneous Movements of Carrier Substrates, J. Membrane Biol. 10, 357 (1972).

    Google Scholar 

  25. R. Blumenthal and O. Kedem, Flux Ratio and Driving Forces in a Model of Active Transport, Biophys. J. 9, 432 (1969).

    Google Scholar 

  26. L. Bolis, in: Progress in Drug Research, Vol. 17 (Ed. E. Jucker; Birkhâuser Verlag, Basel 1973 ), p. 66.

    Google Scholar 

  27. T.L. Hill, Electric Fields and the Cooperativity of Biological Membranes, PROC. Nat. Acad. Sci. 58, 111 (1967).

    Google Scholar 

  28. W. Wilbrandt: Biomembranes III (Eds F. Kreuzer and J.F.G. Siegers; Plenum Pubi. Co. New York 1972 ).

    Google Scholar 

  29. J.W.N. Akkerman, G. Gorter, H.M.A. Corbey, G.E.J. Staal and J.J. Sixma, in:Erythrocytes, Thrombocytes and Leukocytes (G. Thieme Pubi., Stuttgart 1973 ).

    Google Scholar 

  30. A.D. Smith, in: The Interaction of Drugs and Subcellular Components in Animal Cells ( Churchill, London 1968 ), p. 239.

    Google Scholar 

  31. K.H. Berneis, A. Pletscher and M. da Prada, Metal Dependent Aggregation of Biogenic Amines: A Hypothesis for Their Storage and Release, Nature 224, 281 (1969).

    Google Scholar 

  32. J.M. Sneddon, Sodium Dependent Accumulation of 5-Hydroxytryptamine by Rat Blood Platelets, Br. J. Pharmae. 37, 680 (1969).

    Google Scholar 

  33. M. Okuda and Y. Nemerson, Transport of Serotonin by Platelets: A Pump Leak System, Am. J. Physiol. 220, 283 (1971).

    Google Scholar 

  34. H. Feer,The Uptake of Serotonin in Thrombocytes under the Influence of Metabolic Inhibitors, Med. Exp. 18, 55 (1968).

    Google Scholar 

  35. E.G. Puszkin and L.M. Aledort, in: Physiological Pharmacology (Eds V.W.S. Root and F.G. Gofman; Academic Press, New York 1974 ), p. 171.

    Google Scholar 

  36. H. Holmsen, in: Biochemistry of Blood Platelets (Eds F. Kowalski and S. Nuwiarski; Academic Press, New York 1967 ), p. 81.

    Google Scholar 

  37. K. Grette, The Release of 5-Hydroxytryptamine (Strotonin) from Blood Platelets during Coagulation, Scand. J. Clin. Lab. Invest. 11, 50 (1959).

    Google Scholar 

  38. H. Cedar and J.H. Schwartz, Cyclic Adenosine Monophosphate in the Nervous System of A plysia Californica, J. gen. Physiol. 60, 570 (1972).

    Google Scholar 

  39. R.W. Butcher and E.W. Sutherland, Adenosine 3′, 5′-Monophosphate in Biological Materials, J. biol. Chem. 237, 1244 (1962).

    Google Scholar 

  40. P.W. Burkard, H. Lensfield and K.F. Gey: Metabolic Effects of Micotinic Acid and Its Derivatives (Eds K.F. Gey and L.A. Carlson; Hans Huber Publishers, Bern, Stuttgart, Vienna 1971 ), p. 379.

    Google Scholar 

  41. E.W. Salzman and L. Levine, Cyclic 3′,5′-Adenosine Monophosphate in Human Blood Platelets, J. clin. Invest. 50, 131 (1971).

    Google Scholar 

  42. E.W. Salzman and L.L. Neri, Cyclic 3′,5′-Adenosine Monophosphate in Human Blood Platelets, Nature 224, 609 (1969).

    Google Scholar 

  43. E.J. Neer, The Vasopressin Sensitive Adenylase Cyclase of the Rat Rinal Medulla, J. biol. Chem. 248, 3742 (1973).

    Google Scholar 

  44. J.R. Turtle and D.M. Kipnis, An Adrenergic Receptor Mechanism for the Control of 3′,5′-Cyclic Adenosine Monophosphate Synthesis in Tissues, Biochem. biophys. Res. Commun. 28, 797 (1967).

    Google Scholar 

  45. L. Birnbaumer and M. Rodbell,A deny I Cyclase in Fat Cells, J. biol. Chem. 244, 3477 (1969).

    Google Scholar 

  46. I.M. Glynn and A.E. Warner, Nature of the Calcium Dependent Potassium Leak Induced by (+)-Propanolol, and Its Possible Relevance to the Drug’s Anti-Arrhythmic Effect, Br. J. Pharmac. 44, 271 (1972).

    Google Scholar 

  47. T. K. Ray and J. G. Forte, Studies on Phosphodiesterase from Oxyntic Cells of Bullfrog Gastric Mucosa, Arch. Biochem. Biophys. 155, 24 (1973).

    Google Scholar 

  48. J. P. Preslock and J.K. Hampton, Ornithine Decarboxylase Stimulation by 3′,5′-Cyclic AMP in Ovidult of Coturnix Quail, Am. J. Physiol. 225, 903 (1973).

    Google Scholar 

  49. R. Niarda and G. Prino, Effect of a Sulphated Glycopeptide on Rat Gastric Acid Secretion Stimulated by Histamine, Bethanechol, Pentagastrin and Dibutyryl Cyclic AMP, Br. J. Pharmae. 48, 550 (1973).

    Google Scholar 

  50. C.W. Bell and T.M. Monahan, The Role of 3′,5′-Cyclic Adenosine Monophosphate in the Regulation of Mammalian Cell Division, J. Cell Biol. 59, 549 (1973).

    Google Scholar 

  51. S. D. Jaanus and R. P. Rubin, Analysis of the Role of Cyclic Adenosine 3′, 5′-Monophos-phate in Catecholamine Release, J. Physiol, Lond. 237, 465.

    Google Scholar 

  52. W.P. Brady, J. A. Thomson, F.F. Chin and L.S. Hnilica, Chromatin Bound Kinase Activity and Phosphorylation of Chromatin Non-Histone Proteins during Early Kidney Regeneration after Folic Acid, Exp. Cell Res. 84, 183 (1974).

    Google Scholar 

  53. W.Y. Cheung, Inhibition of Cyclicnucleotide Phosphodiesterase by Adenosine 5′-Triphosphate and Inorganic Pyrophosphate, Biochem. biophys. Res. Commun. 23, 214 (1966).

    Google Scholar 

  54. N. Miki, J.J. Keirens, F.R. Marcus, J. Fruman and M.L.V. Bitensky, Regulation of Cyclic Nucleotide Concentrations to Photo Receptors: An ATP Dependent Stimulation of Cyclic Nucleotide Phosphodiesterase by Lipids, Proc. nat. Acad. Sci., USA 70, 3820 (1973).

    Google Scholar 

  55. R. Goodman, F. Oesch and H. Thoenen, Changes in Enzym Patterns Produced by High Potassium Concentration and Dibutyryl Cyclic AMP in Organ Cultures of Sympathetic Ganglia, J. Neurochem. 23, 369 (1974).

    Google Scholar 

  56. M. Huang, E. Gruenstein and J.W. Daly, Depolarization-Evoked Accumulation of Cyclic A MO in Brain Slices: Inhibition by Exogenous Adenosin Diaminase, Biochim. biophys. Acta 329, 141 (1973).

    Google Scholar 

  57. C.F. Naumann, B. Prys and H. Sigel, Adenosine and Inosine 5′-Triphosphates; Protonation, Metal Ion Coordination and Charge-Transfer Interaction between Two Ligants within Turnary Complexes, Eur. J. Biochem. 41, 209 (1974).

    Google Scholar 

  58. P. D. Zieve and M. Schmukler, The Interaction of Thrombin and Nucleotides: Effects on Glycolysis in Human Platelets, Biochim. biophys. Acta 313, 350 (1973).

    Google Scholar 

  59. W. Wilbrandt and T. Rosenberg, The Concept of Carrier Transport and Its Corollaries in Pharmacology, Pharm. Rev. 13, 109 (1961).

    Google Scholar 

  60. I. Tasaki, L. Carnay, R. Sandlin and A. Watanabe, Fluorescence Changes during Conduction Nerves Stained with Acridine Orange, Science 163, 683 (1968).

    Google Scholar 

  61. I. Tasaki, A. Watanabe, R. Sandlin and L. Carnay, Changes in Fluorescence, Turbidity and Associated with Nerve Excitation, Proc. nat. Acad. Sci, USA 61, 883 (1968).

    Google Scholar 

  62. Q. Yuan-Xun, L. Yong-Qing and W. Lian, Effect of Time-Lays on Stability of Dynamical Systems, Acta Math. Sin. 4, 457 (1958).

    Google Scholar 

  63. S. B. Hladky, The Effect of Stirring in the Flux of Carriers into Black Lipid Membranes, Biochim. biophys. Acta 307, 261 (1973).

    Google Scholar 

  64. C. Botré, M. Mascini, A. Memoli and M. Marchetti, Membrane Potentials as Related to Structural Transitions in Lipid-Water Systems, II Farmaco, Ed. Sc. 24, 873 (1969).

    Google Scholar 

  65. A.M. Liquori and C. Botre, Electrochemical Behaviour of Ion Selective Asymmetric Charged Membranes, Ric. Sci. 34 (II-A), 71 (1964).

    Google Scholar 

  66. A.K. Solomon, Red Cell Membrane Struct, and Ion Transport, J. gen. Physiol. 43, Suppl., 1 (1960).

    Google Scholar 

  67. E.J. Ariëns and A.M. Simonis, A Molecular Basis for Drug Action, J. Pharm. Pharmac. 16, 137 (1964).

    Google Scholar 

  68. E.J. Ariens, Affinity and Intrinsic Activity in the Theory of Competition Inhibition, Arch, int. Pharmacodyn. 99, 32 (1954).

    Google Scholar 

  69. M.V. Volkenstein and S.N. Fishman, The Theory of Transport Phenomena in Biological Membranes II. The Active Transport of Ions, Biochim. biophys. Acta 203, 10 (1970).

    Google Scholar 

  70. G.G. Ferguson and M.R. Roach, in: Cardiovascular Fluid Dynamics II (Ed. D.H. Bergel; Academic Press, London, New York 1972 ).

    Google Scholar 

  71. K. Stöckel, F. Solomor, V. Paravicini and H. Thoenen, Dissociation between Effects of Nerve Growth Factor on Tyrosine Hydrolase and Tubulin Synthesis in Sympathetic Ganglia, Nature 250, 150 (1974).

    Google Scholar 

  72. G.B. Ryan, E.R. Unanue and M.J. Karnovsky, Inhibition of Surface Capping of Macromolecules by Local Anaesthetics and Tranquilizers, Nature 250, 56 (1974).

    Google Scholar 

  73. V. Levich, Physicochemical Hydrodynamics (Prentice Hall, Englewood, Cliffs N.J. 1962 ).

    Google Scholar 

  74. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability ( Clarendon Press, Oxford, 1961 ).

    Google Scholar 

  75. G.G. Ferguson and M.R. Roach, in: Cardiovascular Fluid Dynamics II ( Academic Press, London, New York 1972 ), p. 141.

    Google Scholar 

  76. J. Hopkin and M.J. Neal, Effect of Electrical Stimulation and High Potassium Concentrations on the Efflux of 14C Glycine from Slices of Spinal Cord, Br. J. Pharmac. 42, 215 (1972).

    Google Scholar 

  77. R.I. Katz, T.R. Clase and I.J. Kopin, Effect of Ions on Stimulus-Induced Release of Amino Acids from Mammalian Brain Slices, J. Neurochem. 16, 961 (1969).

    Google Scholar 

  78. K.P. Wheeler, Y. Inui, P.F. Hollenberg, E. Eayenson and H.N. Christensen, Relation of Amino Acid Transport to Sodium Ion Concentration, Biochim. biophys. Acta 109, 620 (1965).

    Google Scholar 

  79. K.P. Wheeler and H.N. Chiristensen, Independent Fluxes of Amino Acids and Sodium Ion in the Pigeon Red Blood Cell, J. biol. Chem. 242, 3782 (1967).

    Google Scholar 

  80. F. V. de Feudis, Preferential ‘Binding’ of γ-Aminobutyric Acid and Glycine to Synapto- some-Enriched Fractions of Rat Cerebral Cortex and Spinal Cord, Can. J. Physiol. Pharmac. 52, 138 (1974).

    Google Scholar 

  81. B. Hellman, J. Schlin and I. Tajeljedal, Transport of L-Leucine into Pancreatic ß- Cells with Reference to the Mechanisms of Amino-Acid Induced Insulin Release, Biochim. biophys. Acta 266, 436 (1972).

    Google Scholar 

  82. R.K. Margolis and A. Lajtha,Ion Dependence of Amino Acid Uptake in Brain Slices, Biochim. biophys. Acta 163, 374 (1968).

    Google Scholar 

  83. S.R. Snodgrass, Studies on GABA and Protein Synthesis, Brain Res. 59, 339 (1973).

    Google Scholar 

  84. N.-E. Anden and G. Stock, Inhibitory Effect of Gammahydroxy-Butyric Acid and Gammaaminobutyric Acid on the Dopamine Cells in the Substantia Nigra, Naunyn- Schmiedebergs Arch. exp. Path. Pharmak. 279, 89 (1973).

    Google Scholar 

  85. B. Koser and H.N. Christensen, Structure and Stoichiometry of the Interdependent Fluxes of Na and Amino Acids by a Red Cell Transport, Federation Proc. 27, 643 (1968).

    Google Scholar 

  86. A.A. Eddy, M.F. Mulcahy and P.J. Thomson, The Effects of Sodium Ions and Potassium Ions on Glycine Uptake by Mouse Ascites-Tumour Cells in the Presence and Absence of Selected Metabolic Inhibitors, Biochem. J. 103, 863–876 (1967).

    Google Scholar 

  87. T.R. Riggs, L.M. Walker and H.N. Christensen, Potassium Migration and Amino Acid Transport, J. biol. Chem. 233, 1497 (1958).

    Google Scholar 

  88. S.O. Thier, A. Blair, M. Fox and S. Segal, The Effect of Extra-Cellular Sodium Concentration in the Kinetics of α-aminoisobutyric Acid Transport in the Rat Kidney Cortex Slice, Biochim. biophys. Acta 135, 300 (1967).

    Google Scholar 

  89. R.M. Borland and R.J. Tasca, Activation of a Na+-Dependent Amino Acid Transport System in Preimplantation Mouse Embryos, Dev. Biol. 36, 169 (1974).

    Google Scholar 

  90. S.G. Schultz and R. Zalusky, Interactions between Active Sodium Transport and Active Amino Transport in Isolated Rabbit Ileum, Nature 204, 292 (1965).

    Google Scholar 

  91. S. Varon, H. Weinstein, C.F. Baxter and E. Roberts, Uptake and Metabolism of Exogenous γ-Aminobutyric Acid by Subcellular Particles in a Sodium-Containing Medium, Biochem. Pharmac. 14, 1755 (1965).

    Google Scholar 

  92. I.H. Rosenberg, A.L. Coleman and L.E. Rosenberg, The Role of Sodium Ion in the Transport of Amino Acids by the Intestine, Biochim. biophys. Acta 102, 161 (1965).

    Google Scholar 

  93. R.B. Parlin and H. Eyring, in: Ion Transport Across Membranes (Ed. H.T. Clarke, New York 1954 ).

    Google Scholar 

  94. J. A. Jacquez, Carrier-Amino Acid Stoichiometry in Amino Acid-Transport in Ehrlich as Cites Cells, Biochim. biophys. Acta 71, 15 (1963).

    Google Scholar 

  95. D.R. Hunter, C.L. Norberg and I.H. Segal, Effect of Cycloheximide on L-Leucine Transport by Penicillium Chrysogenum: Involvement of Calcium, J. Bact. 114, 956 (1973).

    Google Scholar 

  96. A.L. Frankhuyzen, Analysis of Ergotanine-5-HT Interaction on the Isolated Rat Stomach Preparation, Eur. J. Pharmac. 30, 205 (1975).

    Google Scholar 

  97. J.H. Gaddum and Z.P. Picarelli, Two Types of Tryptamine Receptor, Br. J. Pharmac. 12, 323.

    Google Scholar 

  98. D.C. Dyer, Evidence for the Action of d-Lysergic Acid Diethylamide, Mescaline and Bugotaninon 5-Hydroxytryptamine Receptors in Umbilical Vasculature, J. Pharmac. exp. Ther. 188, 336 (1974).

    Google Scholar 

  99. A. L. Frankhuyzen and I. L. Bonta, Effect of Mianserin a Potent Anti-Serotonin Agent, on the Isolated Rat Stomach-Fundus Preparation, Eur. J. Pharmac. 25, 40 (1974).

    Google Scholar 

  100. A.L. Frankhuyzen and I.L. Bonta, Receptors Involved in the Action of 5-HT and Tryptamine on the Isolated Rat Stomach -Fundus Preparation, Eur. J. Pharmac. 26, 220 (1974).

    Google Scholar 

  101. T. Rosenberg and W. Wilbrandt, Uphill Transport Induced by Counterflow, J. gen. Physiol. 41, 289 (1957).

    Google Scholar 

  102. H.H. Ussing, The Distinction by Means of Tracers between Active Transport and Diffusion, Acta physiol. scand. 19, 43 (1949).

    Google Scholar 

  103. T. Teorell, Membrane Electrophoresis in Relation to Bioelectrical Polarization Effects, Arch. Sci. Physiol. 3, 205 (1949).

    Google Scholar 

  104. A. Pletscher, Metabolism. Transfer and Storage of 5-Hydroxytryptamine in Blood Platelets, Br. J. Pharmac. 32, 1 (1968).

    Google Scholar 

  105. E. G. Shaskan and S.H. Snyder, Metabolism, Transfer and Storage of 5-Hydroxytrypta-mine in Blood Platelets, J. Pharmac. exp. Ther. 175, 404 (1970).

    Google Scholar 

  106. F. Vyskočil and N. Križ, Modification of Single and Double-Barrel Potassium Specific Microelectrodes for Physiological Experiments, Pflüger Arch. 337, 265 (1972).

    Google Scholar 

  107. G.G. Guilbault and F.R. Shu, Enzyme Electrodes Based on the Use of a Carbon Dioxide Sensor, Anal. Chem. 44, 2161 (1972).

    Google Scholar 

  108. C. Botré, M. Marchetti, S. Borghi and A. Memoli, The Use of Membrane Electrodes in Potentiometrie Titration of Living Cells, Biochim. biophys. Acta 183, 249 (1969).

    Google Scholar 

  109. M.N. Minorsky, Théorie des Oscillations (Gauthier, Villars, Paris 1967 ), p. 54.

    Google Scholar 

  110. H. Diebler, M. Eigen, G. Ilge nfritz, G. Maass and R. Winkler, Kinetics and Mechanism of Reactions of Main Group Metal Ions with Biological Carriers, Pure appl. Chem. 20, 93 (1969).

    Google Scholar 

  111. M. Eigen, Ionen und Ladungsübertragungsreaktionen in Lösungen, Ber. Buns. Physik. Chem. 67, 753 (1963).

    Google Scholar 

  112. L.R. Ellsworth and D.T. Armstrong, Inhibition of Luteinization of Transplanted Rat Ovarian Follicles by Polyphloretin Phosphate, Endocrinology 94, 894 (1974).

    Google Scholar 

  113. A.V. Schally, A.J. Kastin and A. Arimura, FSH-Releasing Hormone and LH- Releasing Hormone, Vitam. Horm. Res. 30, 83 (1972).

    Google Scholar 

  114. P.G. Hamrs, S.R. Ojeda and S.M. McCann, Prostaglandin-Induced Release of Pituitary Sites of Action, Endocrinology 94, 1459 (1974).

    Google Scholar 

  115. F.F.G. Rommerts, B.A. Cook, J.W.C.M. v. d. Kamp and H.J. v. d. Molen, M.L. Dufan, K.J. Cam and T. Tsuruhara, Effect of Luteinizing Hormone on 3′,5′-Cyclic AMP and Testosterone Production in Isolated Interstitial Tissue of Rat Testes, FEBS Lett. 55, 114 (1973).

    Google Scholar 

  116. L. Hamberger, H. Herlitz and A. Sjögren, Influence of Gonadotropins and Cyclic AMP on Carbohydrase and Protein Metabolism in the Immature Rat Ovary, Acta Endocrinol. 72, 425 (1973).

    Google Scholar 

  117. D.T. Baird and R.A. Collett, Progesterone Secretion by the Sheep Corpus Luteum after Repeated Infusions of Luteinizing Hormone and Human Chorionic Gonadotrophin, J. Endocrinol. 57, 299 (1973).

    Google Scholar 

  118. R.C. Hallows, D.Y. Wary, D.J. Lewis, C.R. Story and R. Dils, The Stimulation by Prolactin and Growth Hormone of Fatty Acid Synthesis in Expiants form Rat Mammary Glands, J. Endocrinol. 57, 265 (1973).

    Google Scholar 

  119. R.V. Bai, K. Bischoff, J.C. Macome and E. Diczfalusy, In vitro Sterol and Steroid Synthesis by Ovaries of Hypophysectomized Immature Rats Treated with Human Gonadotropins, Acta Endocrinol. 75, 321 (1973).

    Google Scholar 

  120. J. Robinson and P.M. Stevenson, On the Mechanism of Action of Luteinizing Hormone on Steroidogenesis, J. Endocrinol. 59, xix (1973).

    Google Scholar 

  121. J. Sandow and C. Robyn, Plasma Prolactin Levels in the Male Rat after Pituitary Injection of LH-RH, Acta Endocrinol. (Kbh), Suppl. 173, 85 (1973).

    Google Scholar 

  122. B. J. Danzo, Characterization of a Receptor for Human Chorionic Gonadotropin in Luteinized Rat Ovaries, Biochim. biophys. Acta 304, 560 (1973).

    Google Scholar 

  123. C. Y. Bowers, B.L. Currie, K.N.G. Johansson and K. Folkers, Biological Evidence that Separate Hypothalamic Hormones Release the Follicle Stimulating and Luteinizing Hormones, Biochem. biophys. Res. Commun. 50, 20 (1973).

    Google Scholar 

  124. D. B. Crighton, The Effect of Synthetic Gonadotropin Releasing Factor on the Release of Luteinizing Hormone and Follicle-Stimulating Hormone from Ovine Pituitary Tissue in vitro, J. Endocrinol. 58, 387 (1973).

    Google Scholar 

  125. D. B. Crighton and D.J. Shafer, Effects of Various Synthetic Fragments of the Decapeptide Molecule of Gonadotropin Releasing Factor on the Release of Luteinizing Hormone from Ovine Pituitary Tissue in vitro, J. Endocrinol. 61, xi (1974).

    Google Scholar 

  126. W.F. White and R.H. Rippel, A Highly Bound Analog of Luteinizing Hormone Releasing Hormone, Arch. Biochem. Biophys. 154, 488 (1973).

    Google Scholar 

  127. N. Yanaikara, K. Tsuji, C. Yanaikara, T. Hashimoto, T. Kaneko, H. Oka, A. Arimura and A.V. Schally, Synthesis and Biological Activities of Analogs of Luteinizing Hormone-Releasing Hormone (LH-RH) Substituted in Position 1 or 2, Biochem. biophys. Res. Commun. 51, 165 (1973).

    Google Scholar 

  128. J. Spona, LH-RH Interaction with the Pituitary Plasma Membrane, FEBS Lett. 34, 24 (1973).

    Google Scholar 

  129. E. C. Griffiths and K.C. Hooper, Competitive Inhibition between Oxytocin and Luteinizing Hormone-Releasing Factor (LRF) for the Same Enzyme System in the Rat Hypothalamus, Acta Endocrinol. 75, 435 (1974).

    Google Scholar 

  130. G. Grant, W. Vale and J. Rivier, Pituitary Binding Sites for [3H]-Labelled Luteinizing Hormone Releasing Factor (LRF), Biochem. biophys. Res. Commun. 50, 111 (1973).

    Google Scholar 

  131. K. Wakabayashi, Y. Datu and B.I. Tamadri, On the Mechanism of Action of Luteinizing Hormone-Releasing Factor and Prolactin Release Inhibiting Factor, Endocrinology 92, 698 (1973).

    Google Scholar 

  132. C. A. Harris and F.A. Jenner, Some Aspects of the Inhibition of the Action of Antidiuretic Hormone by Lithium Ions in the Rat Kidney and Bladders of the Toad Bufo Marinus, Br. J. Pharmac. 44, 223 (1972).

    Google Scholar 

  133. P. J. Bentley and A. Wasserman, The Effect of Lithium on the Permeability of an Epithelial Membrane, the Toad Crinary Bladder, Biochim. biophys. Acta 266, 285 (1972).

    Google Scholar 

  134. H. Ishikawa, T. Nagayama and K. Niizuma, The Mechanism of the Stimulation of LH Production by Synthetic LH-Releasing Hormone (LH-RH) in Tissue Culture, Biochem. biophys. Res. Commun. 55, 492 (1973).

    Google Scholar 

  135. D. A. Henes and P. D. Whitton, Stimulation by Vasopressin of Glycogen Breakdown and Glyconeogenesis in the Perfused Rat Liver, Biochem. J. 136, 705 (1973).

    Google Scholar 

  136. M. Parisi and Z.F. Piccini, The Penetration of Water into the Epithelium of Toad Urinary Bladder and Its Modification by Oxytocin, J. Memb. Biol. 12, 227 (1973).

    Google Scholar 

  137. E. J. Neer, Biologically Active l4C Vasopressin: A New and Simplified Synthesis, J. biol. Chem. 248, 3806 (1973).

    Google Scholar 

  138. M. Camier, R. Alazard and P. Cohen, Hormonal Interaction at the Molecular Level A Study of Oxytocin and Vasopressin Binding to Bovine-Neurophysins, Eur. J. Biochem. 32, 207 (1973).

    Google Scholar 

  139. C.Y. Lee and R.J. Ryan, Interaction of Ovarian Receptors with Human Luteinizing Hormone and Human Chorionic Gonadotropin, Biochemistry 12, 4609 (1973).

    Google Scholar 

  140. J.R. Lyerla and M.H. Frudman, Spectral Assignment and Conformational Analysis of Cyclic Peptides by Carbon-13 Nuclear Magnetic Resonance, J. biol. Chem. 247, 8183 (1972).

    Google Scholar 

  141. J. D. Glickson, D.W. Urry and R. Walter, Method of Correlation of Proton Magnetic Resonance Assignments in Different Conformational Transition of Oxytocin and Lysine- Vasopressin from Dimethylsulphoxide to Water, Proc. nat. Acad. Sci. 69, 2566 (1972).

    Google Scholar 

  142. A.I.R. Brewster and V.J. Hruby, 300 MHz Nuclear Magnetic Resonance Study of Oxytocin in Aqueous Solution; Conformational Implications, Proc. nat. Acad. Sci. 70, 3806 (1973).

    Google Scholar 

  143. E. Braslow, J. Weis and C.J. Menendez-Botet, Small Peptides as Analogs of Oxytocin and Vasopressin in Their Interaction with Bovine Neurophysin-II, Biochemistry 12, 4644 (1973).

    Google Scholar 

  144. P. Dreyfus, Synthesis and Some Pharmacological Properties of 8-e-Hydroxynorleucine- Vasopressin, J. Med. Chem. 17, 252 (1974).

    Google Scholar 

  145. D.F. Dyckes, J.J. Nestor, M.F. Ferger and V. du Vigneaud, [1-ß-Mercapto- ß,ß-diethiylpropionic acid]-8-Lysine Vasopressin, a Potent Inhibitor of 8-Lvsine- Vasopressin and of Oxytocin, J. Med. Chem. 17, 250 (2974).

    Google Scholar 

  146. C.F. Barfknecht and D.B. Rusterholz, Inhibition of Prolactin by Ergoline Congeners, J. Med. Chem. 17, 308 (1974).

    Google Scholar 

  147. J. M. Cassedy, G. S. Li, E. B. Spitzner, H. G. Floss and J. A. Clemens, Ergot Alkaloids. Ergolines and Related Compounds as Inhibitors of Prolactin Release, J. Med. Chem. 17, 300 (1974).

    Google Scholar 

  148. J. Humphries, G. Fisher, Y.P. Wan and K. Folkers, Analogs of the Luteinizing Hormone-Releasing Hormone to Study Conformational Aspects of the Aromatic Amino Acid Moieties and Inhibition, J. Med. Chem. 17, 569 (1974).

    Google Scholar 

  149. D.B. Crighton, The Effect of a Synthetic Decapeptide on the Release of Luteinizing Hormone and Follicle-Stimulating Hormone from Ovine Pituitary Tissue in vitro, J. Physiol., Lond. 226, 68P (1972).

    Google Scholar 

  150. D.H. Coy, E.J. Coy, A.V. Schally, J.A. Vilchez-Martinez, L. Debeljak, W.H. Carter and A. Arimura, Stimulatory and Inhibitory Analogs of Luteinizing Hormone Releasing Hormone, Biochemistry 13, 323 (1974).

    Google Scholar 

  151. L.A. Zanini, G. Giamatasio and J. Meldoks, Studies on in vitro Synthesis and Secretion of Growth Hormone and Prolactin II. Evidence against the Existence of Precursor Molecules, Endocrinology 94, 104 (1974).

    Google Scholar 

  152. K. C. Swearingen, Heterogeneous Turnover of Adenohypophyseal Prolactin, Endocrinology 89, 1380 (1971).

    Google Scholar 

  153. H. Friesen, Human Prolactin, Ann. Rev. Med. 24, 251 (1973).

    Google Scholar 

  154. B. A. Doneen and H.A. Bern, PRL Antagonizes Cortisol Effect of Enhancing Bladder’s H2O Permeability, J. exp. Zool. 187, 173 (1974).

    Google Scholar 

  155. D.F. Horrobin, M.S. Manku and D. Robertshaw, Water-Losing Action of Anti- Diuretic Hormone in the Presence of Excess Cortisol: Restoration of Normal Action by Prolactin or by Oxytocin, J. Endocrinol. 58, 135 (1973).

    Google Scholar 

  156. M.S. Manku, B.A. Nassar and D.F. Horrobin, Effects of Prolactin on the Responses of Rat Aortic Wall Strips to Noradrenaline, J. Endocrinol. 61, vi (1974).

    Google Scholar 

  157. B.S. Leung and G.S. Sasaki, Prolactin and Progesterone on Specific Estradiol-Binding in Uterine and Mammary Tissues in vitro, Biochem. biophys. Res. Commun. 55, 1180 (1973).

    Google Scholar 

  158. E. Flückiger, P.M. Lutterbeck, H.R. Wagner and E. Billeter, Antagonism of 2-Br-α-Ergotryptine-methane Sulfonate (CB 154) to Certain Endocrinol Actions of Centrally Active Drugs, Experientia 28, 924 (1973).

    Google Scholar 

  159. P. Richardson, Evidence for a Physiological Role of Prolactin in the Rat after Its Inhibition by 2-Bromo-α-ergokryptine, Br. J. Pharmac. 47, 623 (1973).

    Google Scholar 

  160. K.M. Gautvik and A.H. Tashjean, Effects of Ca2+ and Mg2+ on Secretion and Synthesis of Growth Hormone and Prolactin by Clonal Strains of Pituitary Cells in Culture, Endocrinology 92, 573 (1972).

    Google Scholar 

  161. F. Labella, R. Dular, S. Vivian and G. Queen, Pituitary Hormone Release of Inhibiting Activity of Metal Ions Present in Hypothalamic Extracts, Biochem. biophys. Res. Commun. 52, 786 (1973).

    Google Scholar 

  162. F.S. Labella, R. Dular, P. Lemen, S. Vivian and G. Queen, Prolactin Secretion is Specifically Inhibited by Nickel, Nature 245, 330 (1973).

    Google Scholar 

  163. N.L. Gershfeld, M. Wormser and S. Razin, Cholesterol in Mycoplasma Membranes. Kinetics and Equilibrium Studies on Cholesterol Uptake by the Cell Membrane of Acholeplasma laidlawii, Biochim. biophys. Acta 352, 371 (1974).

    Google Scholar 

  164. R. Strom, C. Crifo and A. Bozzi, The Interaction of the Polyene Antibiotic Lucensomycin with Cholesterol in Erythrocyte Membranes and in Model Systems, Biophys. J. 13, 568 (1973).

    Google Scholar 

  165. M.E. Haberland and J.A. Reynolds, Self-Association of Cholesterol in Aqueous Solution, Proc. nat. Acad. Sci. 70, 2313 (1973).

    Google Scholar 

  166. A.W. Norman, R.A. Demel, B. de Kruyff, W.S.M. Geurts van Kessel and L.L.M. van Deenen, Studies on the Biological Properties of Polyene Antibiotics: Comparison of Other Polyenes with Filipin in Their Ability to Interact Specifically with Sterol, Biochim. biophys. Acta 290, 1 (1972).

    Google Scholar 

  167. A.W. Horton, A.R. Schuff and D.W. McClure, Ionic Transport through Model Membranes II. Function of Cholesterol and Steroid Hormones, Biochim. biophys. Acta 318, 225 (1973).

    Google Scholar 

  168. J. van der Bosch, Chr. Schudt and D. Pette,Influence of Temperature, Cholesterol, Dipalmitoyllecithin and Ca2+ on the Rate of Muscle Cell Fusion, Exp. Cell Res. 82, 433 (1973).

    Google Scholar 

  169. R. Bittman and S.A. Fischkoff, Fluorescence Studies of the Binding of the Polyene Antibiotics Filipin III, Amphotericin B, Nystatin and Lagosin to Cholesterol, Proc. nat. Acad. Sci. 69, 3795 (1972).

    Google Scholar 

  170. J.N. Barbotin and D. Thomas, Electron Microscopic and Kinetic Studies Dealing with an Artificial Enzyme Membrane-Application to a Cytochemical Model with the Horseradish Peroxidase-3,3′-diaminobenzidine System, J. Histochem. Cytochem. 22, 1048 (1974).

    Google Scholar 

  171. T.T. Ngo and K.J. Laidler, Immobilized Electric Eel Cholesterinase, Biochim. biophys. Acta 377, 303 (1975).

    Google Scholar 

  172. D. Thomas, C. Bourdillon, G. Broun and J. P. Kernevez, Kinetic Behavior of Enzymes in Artificial Membranes. Inhibition and Reversibility Effects, Biochemistry 13, 2995 (1974).

    Google Scholar 

  173. D. Thomas and G. Broun, Monoenzymatic Model Membranes: Diffusion-Reaction Kinetics and Phenomena, Biochimie 54, 229 (1972).

    Google Scholar 

  174. M. da Prada, K.H. Berneis and A. Pletscher, Storage of Catecholamines in Adrenal Medullary Granules: Formation of Aggregates with Nucleotides, Life Sci. 10 (I), 639 (1971).

    Google Scholar 

  175. K.H. Berneis, U. Goetz, M. da Prada and A. Pletscher, Interaction of Aggregated Catecholamines and Nucleotides with Intragranular Proteins, Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 277, 291 (1973).

    Google Scholar 

  176. J.Th.G. Overbeeck, in: Colloid Science (II) (Ed. H.R. Kruyt, Elsevier, 1952 ), p. 131.

    Google Scholar 

  177. M.E. Hobbs, Effect of Salts on Soap Micelles, J. Physic. Chem. 55, 675 (1951).

    Google Scholar 

  178. P. Debye, Reaction Rates in Ionic Solution, Trans. Electrochem. Soc. 82, 265 (1942).

    Google Scholar 

  179. A.V. Hill, The Mode of Action of Nicotin and Curare Determined by the Form of the Contraction Curve and the Method of Temperature Coefficient, J. Physiol. 39, 361 (1909).

    Google Scholar 

  180. J. Yonath and G. Blauer, Protein-Detergent Interactions; Properties and Thermodynamic Analysis of the System Ferrimyoglobin-Laurylpyridinium Chloride, Eur. J. Biochem. 41, 163 (1974).

    Google Scholar 

  181. J.R. Smythies, F. Antun, C. Yank and C. Yorke, Mechanisms of Storage of Transmitters in Synaptic Terminals, Nature 231, 185 (1971).

    Google Scholar 

  182. P. Debye and E. Hueckel, Zur Theorie der Elektrolyte, Physik. Z. 24, 185 (1923).

    Google Scholar 

  183. P. Seeman, Transient Holes in the Erythrocyte Membrane during Hypotonic Hemolysis and Stable Holes in the Membrane after Lysis by Saponin and Lysolecithin, J. Cell Biol. 32, 55 (1967).

    Google Scholar 

  184. W.O. Kwant and P. Seeman, The Displacement of Membrane Calcium by a Local Anaesthetic (Chlorpromazine), Biochim. biophys. Acta 193, 338 (1969).

    Google Scholar 

  185. H. Balzer, M. Makinose and W. Hasselbach, The Inhibition of the Sarcoplasmic Calcium Pump by Prenylamine, Reserpine, Chlorpromazine and Imipramine, Naunyn- Schmiedebergs Arch. Pharmak. exp. Path. 260, 444 (1968).

    Google Scholar 

  186. J.C. Foreman and J.L. Mongar, The Role of Alkaline Earth Ions in Anaphylactic Histamine Secretion, J. Physiol. 224, 753 (1972).

    Google Scholar 

  187. T. Nogrady, P. D. Nrdina and G.M. Ling, Investigation into the Association between Serotonin and Adenosine Triphosphate in vitro by Nuclear Magnetic Resonance and Ultraviolet Spectroscopy, Molec. Pharmac. 8, 565 (1972).

    Google Scholar 

  188. H.G. Weder, The Interaction of Biogenic Amines with Adenosine-5′- triphosphate; a Calorimetric Study, FEBS Lett. 38, 64 (1973).

    Google Scholar 

  189. N.-A. Hillarp, Further Observations on the State of the Catecholamines Stored in the Adrenal Medullary Granules, Acta physiol. scand. 47, 271 (1959).

    Google Scholar 

  190. D. Lagunoff and H. Wan, Temperature Dependence of Mast Cell Histamine Secretion, J. Cell Biol. 61, 809 (1974).

    Google Scholar 

  191. K.M. Taylor and S.H. Snyder, The Release of Histamine from Tissue Slices of Rat Hypothalamus, J. Neurochem. 21, 1215 (1973).

    Google Scholar 

  192. W. Hasselbach and G. Taugner, The Effect of a Cross-Bridging Thiol Reagent on the Catecholamine Fluxes of Adrenal Medulla Vesicles, Biochem. J. 119, 265 (1970).

    Google Scholar 

  193. G. Nichol and P. Rogers, Bone Cell Calcium Stores: Their Size, Location and Kinetics of Exchange, Calc. Tiss. Res. 9, 80 (1972).

    Google Scholar 

  194. A. Schauer and M. Eder, Nachweis und Bedeutung der Bindung von Histamin an A denosin-5′- Triphosphorsäure undandere Phosphatverbindungen, Klin. Wschr. 59, 76 (1961).

    Google Scholar 

  195. H. L. Booij and H.G. Bungenberg de Jong, in: Protoplasmatologia, Vol. 1/2 ( Springer, Wien 1956 ).

    Google Scholar 

  196. W. Dorst and C. Botré, Models of Biological Membranes, II Farmaeo, Ed. Sc. 23, 399 (1968).

    Google Scholar 

  197. C.-H. Aborg and B. Uvnaes, A Mucopolysaccharide-Protein Complex with Amine Binding Properties in Rat Thrombocytes, Acta physiol. scand. 81, 568 (1971).

    Google Scholar 

  198. A. Bergendorff and B. Uvnaes, Evidence for an Ionic Binding to Carboxyl Groups in a Granule Heparin-Protein Complex, Acta physiol. scand. 84, 320 (1972).

    Google Scholar 

  199. R.K. Sanyal and B. West, Binding of Histamine in Mammalian Tissues, Nature 178, 1293 (1956).

    Google Scholar 

  200. K.B. Helle, Distribution of Chromogranin A and Dopamine ß-Hydroxylase Activity in the Membrane and Water-Soluble Granule Fractions, Biochim. biophys. Acta 245, 80 (1971).

    Google Scholar 

  201. K.H. Berneis, A. Pletscher and M. da Prada, Phase Separations of Norepinephrine and Adenosine-Triphosphate; Influence of Divalent Cations and Drugs, Br. J. Pharmac. 39, 382 (1970).

    Google Scholar 

  202. T.F. Burks, Mediation by 5-Hydroxytryptamine of Morphine Stimulant A ctions in Dog Intestine, J. Pharmac. exp. Ther. 185, 530 (1973).

    Google Scholar 

  203. D.L. Martin and A.A. Smith, Ions and the Transport of Gamma-Aminobutyric Acid by Synaptosomes, J. Neurochem. 19, 841 (1972).

    Google Scholar 

  204. T. A. Slotkin and N. Kirshner, Uptake, Storage and Distribution of Amines in Bovine Adrenal Medullary Vesicles, Molec. Pharmac. 7, 581 (1971).

    Google Scholar 

  205. P. Lundborg and R. Stitzel, Uptake of Biogenic Amines by Two Different Mechanisms Present in Adrenergic Granules, Br. J. Pharmac. 29, 342 (1967).

    Google Scholar 

  206. A. Bergendorf and B. Uvnaes, Storage Properties of Rat Mast Cells Granules in vitro, Acta physiol. scand. 87, 213 (1973).

    Google Scholar 

  207. B.P. Hilton and J.N. Cummings, An Assessment of Platelet Aggregation Induced by 5- Hydroxytryptamine, J. clin. Path. 24, 250 (1971).

    Google Scholar 

  208. G.V.R. Born, R.J. Haslam and M. Goldman, Comparative Effectiveness of Adenosine Analogues as Inhibitors of Blood-Platelet Aggregation and as Vasodilators in Man, Nature 205, 678 (1965).

    Google Scholar 

  209. G.V.R. Born, The Effect of 5-Hydroxytryptamine on the Potassium Exchange of Human Platelets, J. Physiol., Lond. 190, 273 (1970).

    Google Scholar 

  210. A.M. Poisner and J.H. Trifaro, The Role of ATP and ATPase in the Release of Catecholamines from the Adrenal Medulla, Molec. Pharmac. 3, 561 (1967).

    Google Scholar 

  211. B. Diamant and C. Peterson, The Metabolism of Monosaccharides in Isolated Rat Mast Cells and Its Influence on Histamine Release Induced by Adenosine-5′-triphosphate, Acta physiol. scand. 83, 324 (1971).

    Google Scholar 

  212. C. Peterson and B. Diamant, Inhibitory Action of Exogenous Adenosine-5′-triphosphate on Glycolysis in Isolated Rat Mast Cells: Significance for Histamine Release, Acta pharmac. tox. (Kbh) 34, 325 (1974).

    Google Scholar 

  213. K. Strandberg, Ca2+-Dependence of Histamine Release and Formation of Slow Reacting Substance in the Cat Paw, Acta physiol. scand. 82, 500 (1971).

    Google Scholar 

  214. J.C. Foreman, J.L. Mongar and B. D. Gomperts, Calcium Ionophores and Movement of Calcium Ions Following the Physiological Stimulus to a Secretory Process, Nature 245, 249 (1973).

    Google Scholar 

  215. H.O. Schild, An Effect of Calcium on Histamine Desensitization of Guinea-Pig Ileum, Br. J. Pharmac. 49, 718 (1973).

    Google Scholar 

  216. R. Dahlquist, Relationship of Uptake of Sodium and 45Calcium to ATP-Induced Histamine Release from Rat Mast Cells, Acta pharmac. tox. (Kbh) 35, 11 (1974).

    Google Scholar 

  217. W.W. Parmley and E. Braunwald, Comparative Myocardial Depressant and Anti- Arrhythmic Properties of d-Propanolol, dl-Propanolol and Quinidine, J. Pharm, exp. Ther. 158, 11 (1967).

    Google Scholar 

  218. W.-M. Chen and F. A. Sunahara, Effects of Norepinephrine in the Presence of Adrenergic Antagonists and Different Ionic Media upon the Mechanical and 86Rubidium Efflux Responses in Vascular Smooth Muscle, Can. J. Physiol. Pharmac. 50, 1117 (1972).

    Google Scholar 

  219. A. Gibson and D. Pollock, Drug-Induced Changes in the Sensitivity of the Rat Anococcygeus Muscle, Br. J. Pharmac. 49, 165P (1973).

    Google Scholar 

  220. J.-P. Behr and J.-M. Lehn, Molecular Dynamics of Acetylcholine and of Choline, Biochem. biophys. Res. Commun. 49, 1573 (1972).

    Google Scholar 

  221. M.A. Griffey, H.H. Conaway and J.E. Whitney, Extracellular Calcium and Acetyl- choline-Induced Insulin Secretion, Diabetes 23, 494 (1974).

    Google Scholar 

  222. P. Bevan, C.M. Bradshaw, M.H.T. Roberts and E. Szabadi, The Dual Action of Tricyclic Antidepressant Drugs on Responses of Single Cortical Neurones to Acetylcho-line, Br. J. Pharmac. 49, 173P (1973).

    Google Scholar 

  223. J.H. Szurszewski and E. Buelbring, The Stimulant Action of Acetylcholine and of Catecholamines on the Uterus, Phil. Trans. R. Soc. [B] 265, 149 (1973).

    Google Scholar 

  224. J. Harkins, M. Arsenault, H. Schlesinger and J. Kates, Induction of Neuronal Functions; Acetylcholine-Induced Acetylcholesterinase Activity in Mouse Neuroblastoma Cells, Proc. nat. Acad. Sci., USA 69, 3161 (1972).

    Google Scholar 

  225. J.L. Borowitz, Extracellular Calcium Concentration and Catecholamine Release from Adrenal Medulla by Acetylcholine and Potassium, Experientia 29, 66 (1973).

    Google Scholar 

  226. J.F. Delahayes and E. Bozler, Effects of Drugs and Stimulation on 45 Ca Movements in Frog Ventricle, Proc. Soc. exp. Biol. Med. 141, 423 (1972).

    Google Scholar 

  227. D.G. Haylett and D.H. Jenkinson, Effects of Noradrenaline on Potassium Efflux, Membrane Potential and Electrolyte Levels in Tissue Slices Prepared from Guinea-Pig Liver, J. Physiol., Lond. 225, 721 (1972).

    Google Scholar 

  228. P. Ripoche, J. Bourguet and M. Paris, The Effect of Hypertonic Media on Water Permeability of Frog Urinary Bladder, J. gen. Physiol. 61, 110 (1973).

    Google Scholar 

  229. F. M. Kregenow, The Response of Duck Erythrocytes to Norepinephrine and an Elevated Extracellular Potassium-Volume Regulation in Isotonic Media, J. gen. Physiol. 61, 509 (1973).

    Google Scholar 

  230. B.A. Wahlstroem, The Effect of Noradrenaline on Ionic Contents and 42K and 36Cl Fluxes in Rat Portal Vein, J. Physiol., Lond. 226, 63P (1972).

    Google Scholar 

  231. B.A. Wahlstroem, A Study on the Action of Noradrenaline on Ionic Content and Sodium, Potassium and Chloride Effluxes in the Rat Portal Vein, Acta physiol. scand. 89, 522 (1973).

    Google Scholar 

  232. F. Michal, G. V. R. Born, L. Mester and L. Szabados, Effects of 5-Hydroxytryptamine on the Potassium Ion Exchange of Human Platelets Enriched in Sialic Acid, Biochem. J. 129, 977 (1972).

    Google Scholar 

  233. M.N. Stamatiadou, Inhibition by Serotonin of Glutamine Synthetase Formation in Cultured Mouse Cells Strain L, Biochim. biophys. Acta 304, 169 (1973).

    Google Scholar 

  234. S. Klahr, T. Nawar and A.C. Schoolwerth, Effects of Catecholamines on Ammo- niagenesis and Gluconeogenesis by Renal Cortex in vitro, Biochim. biophys. Acta 304, 161 (1973).

    Google Scholar 

  235. D. Bose and R. Innes, The Role of the Sodium Pump in the Inhibition of Smooth Muscle Responsiveness to Agonist during Potassium Restoration, Br. J. Pharmac. 49, 466 (1973).

    Google Scholar 

  236. N.C. Chakravarty and H.J. Sorensen, Stimulation of Glucose Metabolism in Rat Mast Cells by Antigen, Dextran and Compound 48/80, Used as Histamine Releasing Agents, Acta physiol. scand. 91, 339 (1974).

    Google Scholar 

  237. A. Castro-Vazquez, D. N. de Carli, J.L. Martin, J.H. Dinari and J.M. Rosner, The Effect of Histamine on the Earliest Steps of Oestrogen Action, Ster. Lip. Res. 4, 105 (1973).

    Google Scholar 

  238. M. Quijada, P. Illner, L. Krulich and S. M. McCann, The Effect of Catecholamines on Hormone Release form Anterior Pituitaries and Ventral Hypothalami Incubated in vitro, Neuroendocrinology 13, 151 (1974).

    Google Scholar 

  239. Frantz., CIBA Symposium Lactogenic Hormones (Eds G. B. W. Wolstenholme and J. Knight; London/Edinburgh-Churchill-Livingstone).

    Google Scholar 

  240. R.G. Wilson, B.N. Cole, A.R. Boyns and A.P.M. Forrest, Chlorpromazine Stimulation of Prolactin Secretion: Test of Pituitary Function, Br. J. Cancer 29 (1974).

    Google Scholar 

  241. D. Hasen, R. Mies and W. Winkelmann, The Effect of Chlorpromazine on Plasma Growth Hormone Levels in Agromegaly, Acta Endocrinol. (Kbh) 173, Suppl., 102 (1973).

    Google Scholar 

  242. F.R. Leterrier, F. Rieger and J.F. Mariand, Comparative Studies of Synaptic Membrane Protein Solubilization by Chlorpromazine and Sodium Dodecylsulfate, Bio- chem. Pharmac. 23, 103 (1974).

    Google Scholar 

  243. A. Nagy and M. Wolleman, Different Effect of Chlorpromazine on the Activity of Crystalline Lactic Dehydrogenase Isoenzymes, Biochem. Pharmac. 20, 3331 (1971).

    Google Scholar 

  244. K.-E. Andersson, Effects of Chlorpromazine, Imipramine and Quinidine on Action Potential and Tension Development in Single Skeletal Muscle Fibres of the Frog, Acta physiol. scand. 88, 330 (1973).

    Google Scholar 

  245. B. Goertz, B. Emmerich and W. Kersten, Cell-Free Protein Synthesizing Systems of Rat Brain, Rat Liver and E. coli, Hoppe-Seyler’s Z. physiol. Chem. 353, 793 (1972).

    Google Scholar 

  246. H. Balzer, M. Makinose, W. Fiehn and W. Hasselbach, The Binding of the Calcium Transport Inhibitors Reserpine, Chlorpromazine and Prenylamine to the Lipids of the Membranes of the Sarcoplasmic Reticulum, J. gen. Physiol. 52, 955 (1968).

    Google Scholar 

  247. F. Fuchs, E.W. Gertz and F.N. Briggs, The Effect of Quinidine on Calcium Accumulation by Isolated Sarcoplasmic Reticulum of Skeletal and Cardiac Muscle, Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 260, 456 (1968).

    Google Scholar 

  248. M. Warsfold and J.B. Peter, Kinetics of Calcium Transport by Fragmented Sarcoplas-mic Reticulum, J. biol. Chem. 245, 5545 (1970).

    Google Scholar 

  249. E.S. Assem and G. Atkinson, Histamine Release by MCDP (401), a Peptide of the Venom of the Honeybee, Br. J. Pharmac. 49, 336P (1973).

    Google Scholar 

  250. T. Johansen and N. Chakravarty, Dependence of Histamine Release from Rat Mast Cells on Adenosine Triphosphate, Naunyn-Schmiedebergs Arch. Pharmak. 275, 457 (1972).

    Google Scholar 

  251. N. Chakravarty and H.J. Sorensen, Stimulation of Glucose Metabolism in Rat Mast Cells by Antigen, Dextran and Compound 48/80, Used as Histamine Releasing Agents, Acta physiol. scand. 91, 339 (1974).

    Google Scholar 

  252. G.V.R. Born, Aggregation of Blood Platelets by Adenosine Diphosphate and Its Reversal, Nature 194, 927 (1962).

    Google Scholar 

  253. W. Hasselbach and M. Makinose, in: Role of Membranes in Secretory Processes (Eds L. Bolis, R.D. Keynes, W. Wilbrandt, Elsevier, North Holland 1972 ).

    Google Scholar 

  254. A.G. Garcia and S.M. Kirpekar, Release of Noradrenaline from Slices of Cat Spleen by Pre-Treatment with Calcium, Strontium and Barium, J. Physiol., Lond. 235, 693 (1973).

    Google Scholar 

  255. R.J. Boucek and N.L. Noble, Histamine, Norepinephrine and Bradykinin Stimulation of Fibroblast Growth and Modification of Serotonin Response, Proc. Soc. exp. Biol. Med. 21, 1215 (1973).

    Google Scholar 

  256. T.R. Deline, P. Eyre and P. W. Wells, Histamine Releasing Properties of the Antithel- mintic, l-Diethylcarbamyl-4-methylpiperazine Citrate (Diethylcarbamazine), Arch. int. Pharmacodyn. 205, 192 (1973).

    Google Scholar 

  257. R. Fantozzi, P.F. Mannaioni and F. Moroni, The Inhibition of Histamine Uptake and Metabolism in the Guinea-Pig Atrium and in Mouse Neoplastic Mast Cells in vitro, Br. J. Pharmac. 49, 361 (1973).

    Google Scholar 

  258. J. de Gier, J.G. Mandersloot and L.L.M. van Deenen, Lipid Composition and Permeability of Liposomes, Biochim. biophys. Acta 150, 666 (1968).

    Google Scholar 

  259. A. Finkelstein and A. Cass, Permeability and Electrical Properties of Thin Lipid Membranes, J. gen. Physiol. 52, 145S (1968).

    Google Scholar 

  260. T.E. Andreoli and M. Monahan, The Interaction of Polyene Antibiotics with Thin Lipid Membranes, J. gen. Physiol. 52, 300 (1968).

    Google Scholar 

  261. M.C. Goodall, Structural Effects in the Action of Antibiotics on the Ion Permeability of Lipid Bilayers, Biochim. biophys. Acta 203, 28 (1970).

    Google Scholar 

  262. C. Helene, T. Montenay-Garestier and J. L. Dimicoli, Interactions of Tyrosine and Tyramine with Nucleic Acids and Their Components. Fluorescence, Nuclear Magnetic Resonance and Circular Dichroism Studies, Biochim. biophys. Acta 254, 349 (1971).

    Google Scholar 

  263. J.B. Jones and K.B. Gordon, Micellar Aggregation of A5-Ketosteroids Lacking a Polar C-17 Group and Its Relation to the Activity and Specificity of the A5-AA-3-Ketosteroid Isomerase of Pseudomonas Testeroni, Biochemistry 12, 71 (1973).

    Google Scholar 

  264. J.B. Jones and D.C. Wigfield, Steroids and Steroidases VI. On the C-17 Specificity of the A5-3-Ketoisomerase of Pseudomonas Testeroni and Evidence for Substrate Micelle Formation, Can. J. Chem. 46, 1459 (1968).

    Google Scholar 

  265. K. Bloch, in: Comparative Biochemistry and Physiology of Transport (Eds L. Bolis, K. Bloch and F. Lynen; Elsevier, North Holland 1974 ).

    Google Scholar 

  266. S.C. Batra, Effects of Some Estrogens and Progesterone on Calcium Uptake and Calcium Release by Myometrial Mitochondria, Biochem. Pharmac. 22, 803 (1973).

    Google Scholar 

  267. P. Feigelson and O. Greengard, Immunochemical Evidence for Increased Titers of Liver Tryptophan Pyrrolase during Substrate and Hormonal Enzyme Induction, J. biol. Chem 237, 3714 (1962).

    Google Scholar 

  268. F.T. Kenney and R.M. Flora, Induction of Tyrosine-oc ketoglutarate Transaminase in Rat Liver, J. biol. Chem. 236, 2699 (1961).

    Google Scholar 

  269. H.H. Samuels and G.M. Tomkins, Relation of Steroid Structure to Enzyme Induction in Hepatoma Tissue Culture Cells, J. molec. Biol. 52, 57 (1970).

    Google Scholar 

  270. J.C. Hsia and J.M. Boggs, Influence of pjj and Cholesterol on the Structure of Phosphatidylethanolamine Multibilayers, Biochim. biophys. Acta 266, 18 (1972).

    Google Scholar 

  271. H. Watanabe, W.E. Nicholson and D.N. Orth, Inhibition of Adrenocorticotrophic Hormone Production by Glucocorticoids in Mouse Pituitary Tumor Cells, Endocrinology 95, 411 (1973).

    Google Scholar 

  272. D. L. Young, Estradiol- and Testosterone-Induced Alterations in Phosphatidylcholine and Triglyceride Synthesis in Hepatic Endoplasmic Reticulum, J. Lipid Res. 12, 590 (1971).

    Google Scholar 

  273. D. Greenberg, C. Heitz and J. P. Long, Testosterone-Induced Depression Adrenergic Activity in the Perfused Canine Hindlimb, Proc. Soc. exp. Biol. Med. 142, 883 (1972).

    Google Scholar 

  274. A. Angel, K.S. Desai and M.L. Halperin, Reduction in Adipocyte ATP by Lipolytic Agents: Relation to Intracellular Fatty Acid Accumulation, J. Lipid Res. 12, 203 (1971).

    Google Scholar 

  275. J. P. Tranzer and H. R. Baumgartner, Filling Gaps in the Vascular Endothelium with Blood Platelets, Nature 216, 1126 (1967).

    Google Scholar 

  276. J. Uitto, H. Teir and K.K. Mustakallio, Corticosteroid-Induced Inhibition of the Biosynthesis of Human Skin Collagen, Biochem. Pharmac. 21, 2161 (1972).

    Google Scholar 

  277. H. Nakagawa and S. Tsuruguji, Evidence for the Inhibition of Protocollagen Biosyn-thesis by an Anti-Inflammatory Steroid in Rat Carragenin Granuloma, Biochem. Phar¬mac. 21, 1884 (1972).

    Google Scholar 

  278. T.N. Bhalla, J.N. Sinha, K.K. Tangri and K.P. Bhargava, Mechanism of Anti-inflammatory Activity of ct.-Adrenoceptor Blocking Agents, Eur. J. Pharmac. 20, 366 (1972).

    Google Scholar 

  279. M.W. Greaves and W. McDonald-Gibson, Prostaglandin Biosynthesis by Human Skin and Its Inhibition by Corticosteroids, Br. J. Pharmac. 46, 112 (1972).

    Google Scholar 

  280. J. A. Blaquier, An in vitro Action of Androgens on Protein Synthesis by Epididymal Tubules Maintained in Organ Culture, Biochem. biophys. Res. Commun. 52, 1177 (1973).

    Google Scholar 

  281. S.-H. Tu, R.E. Nordquist and M.J. Griffin, Membrane Changes in Hela Cells Grown with Cortisol, Biochim. biophys. Acta 290, 92 (1972).

    Google Scholar 

  282. A.K. Sinha and G. Melnykovych, Sialic Acid in Prednisolone Treated Hela Cells; Suggested Mechanism for Elevated Levels at Cell Surface, Biochem. biophys. Res. Commun. 49, 984 (1972).

    Google Scholar 

  283. D. Gospodarowicz, A Comparative Study of the Lipolytic Activity of Thyroid-Stimulat-ing Hormone and Luteinizing Hormone, J. biol. Chem. 248, 1314 (1973).

    Google Scholar 

  284. I.A. Forsyth, L.R. Strong and R. Dils, Interactions of Insulin, Corticosterone and Prolactin in Promoting Milk-Fat Synthesis by Mammary Explants from Pregnant Rabbits, Biochem. J. 129, 929 (1972).

    Google Scholar 

  285. J.K. Voglmayr and R.P. Amman, Glucose Metabolism and Lipid Synthesis of Cauda Epididymal and Ejaculated Bull Spermatozoa in the Presence of Selected Androgens, Acta Endocrin. 73, 196 (1973).

    Google Scholar 

  286. M.P. Czech and J.N. Fain, Antagonism of Insulin Action on Glucose Metabolism in White Fat Cells by Dexamethasone, Endocrinology 91, 518 (1972).

    Google Scholar 

  287. A.J. Rizzo, C. Kelly and T.E. Webb, Effect of Cordycepin on Ribosome Formation and Enzyme Induction in Rat, Can. J. Biochem. 50, 1010 (1972).

    Google Scholar 

  288. R.H. Wasserman, Interaction of Vitamin D-Dependent Calcium Binding Protein with Lysolecithin: Possible Relevance to Calcium Transport, Biochim. biophys. Acta 203, 176 (1970).

    Google Scholar 

  289. B.P. Lukert, S.W. Stanbury and E.B. Mawer, Vitamin D and Intestinal Transport of Calcium: Effects of Prednisolone, Endocrinology 93, 718 (1973).

    Google Scholar 

  290. W.L. Risser and T.D. Gelehrter, Hormonal Modulation of Amino Acid Transport in Rat Hepatoma Cells in Tissue Culture, J. biol. Chem. 248, 1248 (1973).

    Google Scholar 

  291. E.J. Bourne, K. Clarke, J.B. Pridham and J.J.M. Rowe, Further Observations on the Activation of Lysosomal Acid oc-Glucosidase by Cortisone Derivatives, Biochem. J. 132, 435 (1973).

    Google Scholar 

  292. D.R. Makulu, E.F. Smyth and J.R. Bertino, Effects of Steroids, Folate Deprivation and Protein Deprivation upon Tetrahydrofolate Dehydrogenase Levels in Mammalian Tissues, Biochim. biophys. Acta 304, 526 (1973).

    Google Scholar 

  293. E. Grazi, E. Magri and G. Sangiorgi, Stimulation by Cortisol of the ‘Ureotelic’ Arginase Activity of Chicken Liver, Biochem. J. 128, 735 (1972).

    Google Scholar 

  294. W.T. Beck, R.A. Bellantone and E.S. Canellakis, The in vivo Stimulation of Rat Liver Ornithine Decarboxylase Activity by Dibutyryl Cyclic Adenosine 3′, 5′-Monophosphate, Theophylline and Dexamethasone, Biochem. biophys. Res. Commun. 48, 1649 (1972).

    Google Scholar 

  295. M.L. Matute and R.K. Kalkhoff, Sex Steroid Influence on Hepatic Gluconeogenesis and Glycogen Formation, Endocrinology 92, 762 (1973).

    Google Scholar 

  296. W.K. Nichols and N.D. Goldberg, The Relationship between Insulin and Apparent Glucocorticoid-Promoted Activation of Hepatic Glycogen Synthetase, Biochim. biophys. Acta 2 79, 245 (1972).

    Google Scholar 

  297. P.K. Joseph and K. Subramanyam, Effect of Hormones on Renal Gluconeogenesis, Biochem. J. 128, 60P (1972).

    Google Scholar 

  298. P.K. Joseph and K. Subramanyam, Evaluation of the Rate-Limiting Steps in the Pathway of Glucose Metabolism in Kidney Cortex of Normal, Diabetic, Cortisone-Treated and Growth Hormone Treated Rats, Biochem. J. 128, 1293 (1972).

    Google Scholar 

  299. J. Levi, S. G. Massry and C. R. Kleeman, The Requirement of Cortisol for the Inhibitory Effect of Norepinephrine on the Antidiuretic Action of Vasopressin, Proc. Soc. exp. Biol. Med. 142, 687 (1973).

    Google Scholar 

  300. J.E. Gielen and D.W. Nebert, Aryl Hydrocarbon Hydroxylase Induction in Mammalian Liver Cell Culture, J. biol. Chem. 247, 7591 (1972).

    Google Scholar 

  301. G.A. Rinard, Effects of Estrogen and Progesterone on Acute Activation of Uterine Phosphorylase, Biochim. biophys. Acta 286, 416 (1972).

    Google Scholar 

  302. P.K. Paul and P.N. Duttagupta, Inhibition of Oestrogen-Induced Increase in Hepatic and Uterine Glycogen by Progesterone in the Rat, Acta Endocrin. 72, 762 (1973).

    Google Scholar 

  303. T.D. Gelehrter, J.R. Emanuel and C.J. Spencer, Induction of Tyrosine Aminotrans-ferase by Dexamethasone, Insulin and Serum, J. biol. Chem. 247, 6197 (1972).

    Google Scholar 

  304. H.W. Mohrenweiser, M.B. Yatvin and H.C. Pitot, Interaction of Glucagon and Catecholamines in the Regulation of Serine Dehydratase, Endocrinology 93, 469 (1973).

    Google Scholar 

  305. C. Vilchez, M.M. Piras and R. Piras, Adrenal Corticosteroids and the Response to Epinephrine or Electrical Stimulation of the Enzymes of Glycogen Metabolism in Rat Skeletal Muscle, Molec. Pharmac. 8, 780 (1972).

    Google Scholar 

  306. B. Simonsson, Depression of 3H-Glucose Uptake into Rabbit Polymorphonuclear Leukocytes by Glucocorticoids in Concentrations Partly Saturating the Specific Glucocorticoid Uptake. Evidence fora Glucocorticoid Receptor, Acta physiol. scand 86, 398 (1972).

    Google Scholar 

  307. J. Stevens, Y.W. Stevens, U. Behrens and V. P. Hollander, Rôle of Nucleoside Transport in Glucocorticoid-Induced Regression of Mouse Lymphoma PI 798, Biochem. Biophys. Res. Commun. 50, 799 (1973).

    Google Scholar 

  308. R.A. Fishman and M. Reiner, Failure of Hydrocortisone to Alter the Transport of Hexoses into Rat Brain and Other Tissues, J. Neurochem. 19, 221 (1972).

    Google Scholar 

  309. D.N. Ishii, W.B. Pratt and L. Arqnow, Steady-State Level of the Specific Glucocorti-coid Binding Component in Mouse Fibroblasts, Biochemistry 11, 3896 (1972).

    Google Scholar 

  310. N. Kaiser, R.J. Milholland and F. Rosen, Glucocorticoid-Binding Macromolecules in Rat and Mouse Thymocytes, J. biol. Chem. 248, 478 (1973).

    Google Scholar 

  311. P. Rennie and N. Bruchovsky, Studies on the Relationship between Androgen Recep-tors and the Transport of Androgens in Rat Prostate, J. biol. Che. 248, 3288 (1973).

    Google Scholar 

  312. M.M. Popovtzer, J. Robinette, C.G. Halgrimson and T.E. Starzl, Acute Effect of Prednisolone on Renal Handling of Sodium, Am. J. Physiol. 224, 651 (1973).

    Google Scholar 

  313. M. Widerholt, C. Behn, W. Schoormans and L. Hansen, Effect of Aldosterone on Sodium and Potassium Transport in the Kidney, J. Steroid Biochem. 5, 151 (1972).

    Google Scholar 

  314. J. Crabbe, Influence of Aldosterone on Active Sodium Transport by the Toad Bladder: A Kinetic Approach, Acta physiol. scand. PO, 417 (1974).

    Google Scholar 

  315. L. Cesari, Asymptotic Behavior and Stability Problems in Ordinary Differential Equa-tions (Springer Verlag Berlin, Heidelberg, New York 1971 ).

    Google Scholar 

  316. E.K. Pye and B. Chance, Substained Sinusoidal Oscillations of Reduced Pyridine Nucleotide in a Cell-Free Extract of Saccharomyces Carlsbergensis, Proc. nat. Acad. Sci., USA 55, 888 (1966).

    Google Scholar 

  317. B. Hess, K. Brand and K. Pye, Continuous Oscillations in a Cell-Free Extract of Saccharomyces Carlsbergensis, Biochem. biophys. Res. Commun. 23, 102 (1966).

    Google Scholar 

  318. M. Waite and S.J. Waikil, Studies on the Mechanism of Fatty Acid Synthesis, XII (Acetyl Coenzyme A Carboxylase), J. biol. Chem. 237, 2750 (1962).

    Google Scholar 

  319. M.D. Hatch and P.K. Stumpf, Fat Metabolism in Higher Plats (XVI). Acetyl Coenzyme A Carboxylase and Acyl Coenzyme A -malonyl Coenzyme A Transcarboxylase from Wheat Germ, J. biol. Chem. 236, 2879 (1961).

    Google Scholar 

  320. M. Matsuhashi, S. Matsuhashi and F. Lynen, Zur Biosynthese der Fettsäuren. V. Die Acetyl-CoA Carboxylase aus Rattenleber und ihre Aktivierung durch Citronensäure, Biochem. Z. 340, 263 (1964).

    Google Scholar 

  321. Y. Kaziro, S. Ochoa, R.C. Warner and J.Y. Chen, Metabolism of Propionic Acid in Animal Tissues, J. biol. Chem. 236, 1917 (1961).

    Google Scholar 

  322. D.R. Halmz, J.Y. Feng, C.S. Hegre and D.M. Lane, Some Enzymic Properties of Mitochondrial Propionyl Carboxylase, J. biol. Chem. 237, 2140 (1962).

    Google Scholar 

  323. J.R. Stern, D.L. Friedman and G.K.K. Menon, Enzymic Carboxylation of Butyryl Coenzyme A, Biochim. biophys. Acta 36, 299 (1959).

    Google Scholar 

  324. W.M. Bortz and L.A. Steele, Synchronization of Hepatic Cholesterol Synthesis, Cholesterol and Bile Acid Content, Fatty Acid Synthesis and Plasma Free Fatty Acid Levels, Biochim. biophys. Acta 303, 85 (1972).

    Google Scholar 

  325. F. Lynen, The Biotin Enzymes, Bull. Soc. Chim. Biol. 46, 1775 (1964).

    Google Scholar 

  326. F. Lynen, J. Knappe, E. Lorch, G. Juetting, E. Ringelmann and J. P. Lachance, Zur biochemischen Funktion des Biotins II (Reinigung und Wirkungsweise der fi-Methyl- crotonyl-carboxylase), Biochem. Z. 335, 123 (1961).

    Google Scholar 

  327. M. Higgins, T. Kawachi and H. Rudney, The Mechanism of the Diurnal Variation of Hepatic HMG-CoA Reductase Activity in the Rat, Biochem. biophys. Res. Commun. 45, 138 (1971).

    Google Scholar 

  328. S. Kaufman, The Stimulation of Rat Liver Phenylalanine Hydroxylase by Lysolecithin anda-Chymotrypsin, J. biol. Chem. 248, 4345 (1973).

    Google Scholar 

  329. D.B. Fisher and S. Kaufman, The Stimulation of Rat Liver Phenylalanine Hydroxylase by Phospholipids, J. biol. Che. 247, 2250 (1972).

    Google Scholar 

  330. E. Heikkinen, H. Karppanen, H. Vapaotano and O. Pelkonen, Lack of Effect of Pinealectomy on the Diurnal Rhythm in Drug Metabolism, Acta pharmac. tox. (Kbh) 32, 157 (1973).

    Google Scholar 

  331. W.B. Quay, Spontaneous Adenomata of the Hypophyseal Anterior Lobe in Aged Pinealectomized Rats, Experientia 23, 129 (1967).

    Google Scholar 

  332. A. Moszkowska, Mécanisme de l’antagonisme épiphyso-hypophysaire, Prog. Brain Res. 70, 564 (1965).

    Google Scholar 

  333. R.J. Wurtman, M.D. Altschule and W. Holmgren, Effect of Pinealectomy and a Bovine Pineal Extract in Rats, Am. J. Physiol. 197, 108 (1959).

    Google Scholar 

  334. R.J. Wurtman, J. Axelrod and W. Chen, Melatonin, a Pineal Substance: Effect on the Rat Ovary, Science 141, 277 (1963).

    Google Scholar 

  335. F. Fraschini, B. Mess, F. Piva and L. Martini, Brain Receptors Sensitive to Indole Compounds: Function in Control of Luteinizing Hormone Secretion, Science 159, 1104 (1968).

    Google Scholar 

  336. R.S. Ulrich and A. Yuwiler, Failure of 6-Hydroxydopamine to Abolish the Circadian Rhythm of Serum Corticosterone, Endocrinology 92, 611 (1973).

    Google Scholar 

  337. A. Jori, S. Caccia and E. di Salle, Tissue Catecholamines and Daily Rhythm of Liver Microsomal Enzyme Activity, Eur. J. Pharmac. 21, 37 (1973).

    Google Scholar 

  338. M. Saito, Daily Rhythmic Changes in Brush Border Enzymes of the Small Intestine and Kidney in Rat, Biochim. biophys. Acta 286, 212 (1972).

    Google Scholar 

  339. S. Shefer, S. Hauser, V. Capar and E.H. Mosbach, Diurnal Variation of HMG CoA Reductase Activity in Rat Intestine, J. Lipid Res. 13, 571 (1972).

    Google Scholar 

  340. B. Barbiroli, C. Bovina, B. Tolomelli and M. Marchetti, Diurnal Variation of Liver Folate Metabolism in Rats Maintained under Controlled Feeding Schedules, Proc. Soc. exp. Biol. Med. 145, 645 (1974).

    Google Scholar 

  341. B.E. Eleftheriou, Circadian Rhythm in Blood and Brain Biogenic Amines and Other Biochemical Changes in Rabbits, Brain Res. 75, 145 (1974).

    Google Scholar 

  342. R.P. Rand and A.C. Burton, Mechanical Properties of the Red Cell Membrane (I). Membrane Stiffness and Intracellular Pressure, Biophys. J. 4, 115 (1964).

    Google Scholar 

  343. M. Suda, K. Nagai and H. Nakagawa, Studies on the Circadian Rhythm of Phospho-enolpyruvate Carboxykinase Activity in Rats, J. Biochem. 73, 727 (1973).

    Google Scholar 

  344. E. Shrago, H.A. Lardy, R.C. Nordlie and D.D. Foster, Metabolic and Hormonal Control of Phospoenolpyruvate Carboxykinase and Malic Enzyme in Rat Liver, J. biol. Chem. 238, 3188 (1963).

    Google Scholar 

  345. L.J. Phillips and L.J. Berry, Hormonal Control of Mouse Liver Phosphoenolpyruvate Carboxykinase Rhythm, Am. J. Physiol. 219, 697 (1970).

    Google Scholar 

  346. L.J. Phillips and L.J. Berry, Circadian Rhythm of Mouse Liver Phosphoenolpyruvate Carboxykinase, Am. J. Physiol. 218, 1440 (1970).

    Google Scholar 

  347. M.J. Zigmond, W.J. Shoemaker, F. Larin and R.J. Wurtman, Hepatic Tyrosine Transaminase Rhythm, Interaction of Environmental Lighting, Food Consumption and Dietary Protein Content, J. Nutr. 98, 71 (1968).

    Google Scholar 

  348. A. R. Inamdar, C. K. Ramakrishna and T. Ramasarma, Effect of Hypobaric Stress on Enzymes of Tryptophan Metabolism, Biochem. J. 127, 509 (1972).

    Google Scholar 

  349. K.W. Gregory, C.Z. Smith and R. Booth, Diurnal Variations in Rat Liver 3- Hydroxy-3-methylglutaryl-coenzyme A Reductase Activity in Relation to Feeding, Biochem. J. 130, 1163 (1972).

    Google Scholar 

  350. S.A. Gordon, M.D. Challberg and E.M. Buess, Light-Phased Circadian Rhythms of Hepatic Tryptophan to Auxin and Tryptophan Aminotransferase Activities in the Mouse, Int. J. Chronobiol. 1, 65 (1973).

    Google Scholar 

  351. P.M. Greengrass and S.M. Tonge, Changes in Brain Monoamine Concentrations during the Oestrous Cycle in the Mouse: Possible Pharmacological Implications, J. Pharm. Pharmac. 23, 897 (1971).

    Google Scholar 

  352. P.M. Greengrass and S.R. Tonge, Effects of Oestrogen and Progesterone on Brain Monoamines: Interactions with Psychotropic Drugs, J. Pharm. Pharmac. 24, 149P (1972).

    Google Scholar 

  353. S.R. Tonge, Permanent Changes in Brain Monoamine Metabolism Induced by the Administration of Psychotropic Drugs during the Pre- and Neonatal Periods in Rats, J. Pharm. Pharmac. 24, 149P (1972).

    Google Scholar 

  354. A.M. Thierry, G. Blanc and J. Glowinski, Dopamine-Norepinephrine: Another Regulatory Step of Norepinephrine Synthesis in Central Noradrenergic Neurons, Eur. J. Pharmac. 14, 303 (1971).

    Google Scholar 

  355. C. Gauchy, Y. Agid, J. Glowinski and A. Cheranny, Acute Effects of Morphine on Dopamine Synthesis and Release and Tyrosine Metabolism in the Rat Striatum, Eur. J. Pharmac. 22, 311 (1973).

    Google Scholar 

  356. R. Samanini, D. Ghezzi and S. Garattini, Effect of Imipramine and Desimipramine on the Metabolism of Serotonin in Midbrain Raphe Stimulated Rats, Eur. J. Pharmac. 20, 281 (1972).

    Google Scholar 

  357. D. Burke, B.G. Lake, J.M. Tredger, J. Chakraborty and J.W. Bridges, Daily Rhythmic Variations in Hamster Liver Drug Metabolism and Associated Parameters, Biochem. J. 130, 72P (1972).

    Google Scholar 

  358. E. Ferrari, P.A. Bossolo, N. Montalbetti, J.W.E. Kuehl and F. Halberg, Circadian Variation of Urinary 17-Corticosteroid Excretion in Relation to Dexamethsone- Induced Adrenocortical Suppression, Int. J. Chronobiol. 2, 17 (1974).

    Google Scholar 

  359. D.E. Lofstrom, W.J.L. Felts and F. Halberg, Circadian Variation in Skin Tensile Strength of Two Inbred Strains of Mice, Int. J. Chronobiol. 1, 259 (1973).

    Google Scholar 

  360. T. Nichols, C. A. Nugent and F. Taylor, Diurnal Variation in Suppression of Adrenal Function by Glucocorticoids, J. clin. Endocrinol. Metab. 25, 343 (1965).

    Google Scholar 

  361. F. Ceresa, A. Angeli, G. Boccenzi and G. Molino, Once-a-Day Neurally Stimulated and Basal A CTH Secretion Phases in Man and Their Response to Corticoid Inhibition, J. clin. Endocrinol. Metab. 29, 1074 (1969).

    Google Scholar 

  362. H. Schatz, V. Maier, M. Hinz, C. Nierle and E.F. Pfeiffer, The Effect of Tolbutamide and Gliblenclamide on the Incorporation of 3H-Leucine and on the Conversion of Proinsulin to Insulin in Isolated Pancratic Islets, FEBS Lett. 26, 237 (1972).

    Google Scholar 

  363. I.A. Macchi, W.R. Beyer, D.A. Gapp, E.H. Blaustein and S.B. Beaser, Monolayer Cultures Derived from Neonatal Hamster Pancreas: Stimulation of Immunoreactive Insulin Secretion and Biosynthesis, Proc. Soc. exp. Biol. Med. 143, 335 (1973).

    Google Scholar 

  364. E. Gylfe, B. Hellman, J. Schlin and I. Taeljedahl, Amino-Acid Conversion in Pancreatic ß-Cells, Endocrinology 93, 932 (1973).

    Google Scholar 

  365. J.M. Feldman, K.E. Quickel and H.E. Lebovitz, Potentiation of Insulin Secretion in vitro by Serotonin Antagonists, Diabetes 21, 779 (1972).

    Google Scholar 

  366. H. Tjaelve, Catechol- and Indolamines in Some Endocrine Cell Systems, Acta physiol. scand., Suppl., p. 360 (1971).

    Google Scholar 

  367. J. Tamarit-Rodriguez, R. Goberna and J. Tamarit, Effect of Glucose-I-Phosphate on Insulin Release in the Isolated Perfused Rat Pancreas, Diabetologia 9, 92 (1973).

    Google Scholar 

  368. R.D.G. Milner, The Stimulation for Insulin Release by Essential Amino Acids from Rabbit Pancreas in vitro, J. Endocrinol. 47, 347 (1970).

    Google Scholar 

  369. J. Feldman and H. Lebovitz, The Specificity of Serotonin Inhibition of Insulin Release from Golden Hamster Pancreas in vitro, Diabetes 19, 475 (1970).

    Google Scholar 

  370. D.H.G. Versteeg, Effect of Two ACTH-Analogs on Noradrenaline Metabolism in Rat Brain, Brain Res. 49, 483 (1973).

    Google Scholar 

  371. B. F. Johnson and C. Chura, Diurnal Variation in the Effect of Tolbutamide, Am. J. Med. Sci. 268, 93 (1974).

    Google Scholar 

  372. N.H. Hunt and A.D. Perris,Calcium and the Control of Circadian Mitotic Activity in Rat Bone Marrow and Thymus, J. Endocrinol. 62, 451 (1974).

    Google Scholar 

  373. W.B. Quay, Twenty-Four Hour Rhythmicity in Carbonic Anhydrase Activities of Chloroid Plexuses and xPineal Gland, Anat. Rec. 174, 279 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Birkhäuser Verlag, Basel

About this chapter

Cite this chapter

Bottse, A.F., Dorst, W., Willems, G.M. (1976). Transport and Accumulation in Biological Cell Systems Interacting with Drugs. In: Jucker, E. (eds) Progress in Drug Research/Fortschritte der Arzneimittelforschung/Progrés des recherches pharmaceutiques. Progress in Drug Research/Fortschritte der Arzneimittelforschung/Progrés des recherches pharmaceutiques, vol 20. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7094-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7094-8_9

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7096-2

  • Online ISBN: 978-3-0348-7094-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics