Skip to main content

Part of the book series: Progress in Probability ((PRPR,volume 36))

Abstract

Every regular, local Dirichlet form on a locally compact, separable space X defines in an intrinsic way a pseudo metric ρ on the state space. Assuming that this is actually a complete metric (compatible with the original topology), we prove that (X, ρ) is a geodesic space. That is, any two points in X are joined by a minimal geodesic.

Also analogues of the Hopf-Rinow Theorem and of the Cartan-Hadamard Theorem are obtained. The latter requires the notion of curvature which is defined by means of the CAT-inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.D. Aleksandrov, V. N. Berestovvskii and I. G. Nikolaev, Generalized Riemannian spaces, Russian Math. Surveys 41, 3 (1986), 1 - 54.

    Google Scholar 

  2. M. Biroli and U. Mosco, Formes de Dirichlet et estimations structurelles dans les milieux discontinus, C. R. Acad. Sci. Paris 313 (1991), 593 - 598.

    MATH  MathSciNet  Google Scholar 

  3. M. Biroli and U. Mosco, A Saint- Venant Principle for Dirichlet forms on discontinuous media, Elenco Preprint, Rome, 1992.

    Google Scholar 

  4. E. A. Carlen, S. Kusuoka and D. W. Stroock, Upper bounds for symmetric Markov transition functions, Ann. Inst. H. Poincaré 2 (1987), 245 - 287.

    MathSciNet  Google Scholar 

  5. E. B. Davies, Heat kernels and spectral theory, Cambridge University Press, 1989.

    Google Scholar 

  6. C. L. Fefferman and D. Phong, Subelliptic eigenvalue problems, in: Conf. on Harmonic Analysis, Chicago (W. Beckner et al., ed.), Wadsworth, 1981, pp. 590 - 606.

    Google Scholar 

  7. C. L. Fefferman and A. Sanchez-Calle, Fundamental solutions for second order subelliptic operators, Ann. of Math. 124 (1986), 247 - 272.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Fukushima, Dirichlet forms and Markov processes, North Holland and Kodansha, Amsterdam, 1980.

    MATH  Google Scholar 

  9. E. Ghys and P. de la Harpe, Sur les groupes hypberboliques d’aprés Mikhael Gromov, Prog. Math., vol. 83, Birkhäuser, Boston, 1990.

    Google Scholar 

  10. M. Gromov, Structures métriques pour les variétés riemanniennes, Rédigé par J. Lafontaine et P. Pansu., Cedic/F.Nathan, 1981.

    MATH  Google Scholar 

  11. D. Jerison, The Poincaré inequality for vector fields satisfying an Hörmander’s condition, Duke J. Math. 53 (1986), 503 - 523.

    MATH  MathSciNet  Google Scholar 

  12. D. Jerison and A. Sanchez-Calle, Estimates for the heat kernel for a sum of squares of vector fields, Indiana Univ. J. of Math. 35 (1986), 835 - 854.

    MATH  MathSciNet  Google Scholar 

  13. Y. Lejan, Mesures associées a une forme de Dirichlet. Applications, Bull. Soc. Math. France 106 (1978), 61 - 112.

    MATH  MathSciNet  Google Scholar 

  14. Z. Ma and M. Röckner, Introduction to the theory of (non-symmetric) Dirichlet forms, Springer Universitext, 1992.

    Google Scholar 

  15. A. Nagel, E. Stein and S. Wainger, Balls and metrics defined by vector fields. I: Basic properties, Acta Math. 155 (1985), 103 - 147.

    Article  MATH  MathSciNet  Google Scholar 

  16. L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Diff. Geom. 36 (1992), 417 - 450.

    MATH  MathSciNet  Google Scholar 

  17. L. Saloff-Coste and D. W. Stroock, Operateurs uniformement sous-elliptiques sur des groupes de Lie, J. Funct. Anal. 98 (1991), 97 - 121.

    Article  MATH  MathSciNet  Google Scholar 

  18. K.-Th. Sturm, Analysis on local Dirichlet spaces — I. Recurrence, conservativeness and L--Liouville properties (to appear in J. Reine Angew. Math.).

    Google Scholar 

  19. K.-Th. Sturm, Analysis on local Dirichlet spaces — II. Upper Gaussian estimates for the fundamental solutions of parabolic equations (to appear in Osaka J. Math.).

    Google Scholar 

  20. K.-Th. Sturm, Analysis on local Dirichlet spaces — III. The parabolic Harnack inequality, Preprint, Erlangen, 1994.

    Google Scholar 

  21. K.-Th. Sturm, Sharp estimates for capacities and applications to symmetric diffusions, Preprint, Erlangen, 1994.

    Google Scholar 

  22. N. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and geometry on groups, Cambridge University Press, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Basel AG

About this paper

Cite this paper

Sturm, KT. (1995). On the Geometry Defined by Dirichlet Forms. In: Bolthausen, E., Dozzi, M., Russo, F. (eds) Seminar on Stochastic Analysis, Random Fields and Applications. Progress in Probability, vol 36. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7026-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7026-9_17

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-7028-3

  • Online ISBN: 978-3-0348-7026-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics