Skip to main content

Part of the book series: Progress in Probability ((PRPR,volume 36))

  • 463 Accesses

Abstract

The phenomenon propagation of chaos describes a cloud of identical particles which behave asymptotically, as their number tends to infinity, independently and identically according to a limiting distribution. We introduce a coherent definition in terms of relative entropy in the tradition of statistical mechanics.

Investigating the inverse problem raised in Nagasawa [38] means to start with certain limiting distributions and to furnish them with microscopical systems which perform propagation of chaos.

The considered limiting distributions are diffusion processes arising from the statistically relevant situation of given particle dynamics and prescribed marginal distributions at initial and final time. They actually describe a wide range of observed phenomena to which the fundamental hypothesis of statistical mechanics applies. We will give an application to diffusions related to wave functions in quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Aebi, N M-transformed ca-Diffusion with Singular Drift, Doktorarbeit, Universität Zürich, 1989.

    Google Scholar 

  2. R. Aebi and M. Nagasawa, Large deviations and the propagation of chaos for Schrödinger processes, Probab. Theory Relat. Fields 94 (1992), 53–68.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Aebi, Itô’s formula for non-smooth functions, Publ. RIMS, vol. 28, Kyoto Univ., 1992, pp. 595–602.

    Google Scholar 

  4. R. Aebi, A solution to Schrödinger’s problem of non-linear integral equations, Techn. Bericht No. 35 des IMSV, Univ. Bern, 1992.

    Google Scholar 

  5. R. Aebi, Diffusions with singular drift related to wave functions, Probab. Theory Relat. Fields 96 (1993), 107–121.

    Google Scholar 

  6. R. Aebi, Watching clouds - prediction from past and future, Habilitationsschrift, Universität Bern, 1993.

    Google Scholar 

  7. R. Aebi, Schrödinger’s view of diffusions, Techn. Bericht No. 36 des IMSV, Univ. Bern, 1993.

    Google Scholar 

  8. R. Aebi, Diffusions in time-symmetrical representation, Techn. Bericht No. 37 des IMSV, Univ. Bern, 1993.

    Google Scholar 

  9. S. Bernstein, Sur les liaisons entre les grandeurs aléatoires, Verhandlungen des Internat. Math. Kongresses Zürich, vol. 1, 1932, pp. 288–309.

    Google Scholar 

  10. A. Beurling, An automorphism of product measures, Ann. Math 72, no. 1 (1960), 189–200.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Academic Press, New York and London, 1968.

    MATH  Google Scholar 

  12. L. Boltzmann, Vorlesungen über Gastheorie, J. A. Barth Verlag, Leipzig, 1896.

    Google Scholar 

  13. L. Boltzmann, Ober die sogenannte H-Kurve, Ges. Abh. III, Nr. 128, Math. Ann. 50 (1898), 325.

    Google Scholar 

  14. I. Csiszâr, I-Divergence geometry of probability distributions and minimization problems, Ann. Probab. 3 (1975), 146–158.

    Google Scholar 

  15. I. Csiszâr, Sanov property, generalized I-projection and a conditional limit theorem, Ann. Probab. 12 (1984), 768–793.

    Google Scholar 

  16. D. A. Dawson and J. Gärtner, Large deviations, free energy functional and quasi-potential for a mean field model of interacting diffusions, Memoirs of the AMS, vol. 78, no. 398, 1989.

    Google Scholar 

  17. D. Dawson, L. Gorostiza, and A. Wakolbinger, Schrödinger processes and large deviations, J. Math. Phys. 31, 10 (1990), 2385–2388.

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Föllmer, Random fields and diffusion processes, Ecole d’Eté de Saint Flour XV-XVII (1985–87), Lecture Notes Math., vol. 1362, Springer-Verlag, 1988.

    Google Scholar 

  19. R. Fortet, Résolution d’un système d’equation de M. Schrödinger, J. M.th. Pures et Appl. 9 (1940), 83–95.

    Google Scholar 

  20. E. Gutkin, and M. Kac, Propagation of chaos and Burger’s equation, SIAM J. Appl. Math. 43, no. 4 (1983), 971–980.

    MathSciNet  MATH  Google Scholar 

  21. K. Itô, On a formula concerning stochastic differentials, Nagoya Math. J. 3 (1951), 55–65.

    Google Scholar 

  22. K. Itô, Lectures on stochastic processes, Tata Institute, Bombay, 1961.

    Google Scholar 

  23. B. Jamison, Reciprocal processes, Z. Wahrsch. verw. Geb. 30 (1974), 65–86.

    Google Scholar 

  24. B. Jamison, The Markov processes of Schrödinger,Z. Wahrsch. verw. Geb. 32 (1975), 323-331.

    Article  MathSciNet  Google Scholar 

  25. J. H. B. Kemperman, On the optimum rate of transmitting information,Probability and Information Theory, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1967, pp. 126169.

    Google Scholar 

  26. A. I. Khinchin, Mathematical foundations of information theory, Dover Publications, New York, 1957.

    MATH  Google Scholar 

  27. A. Kolmogorov, Analytische Methoden in Wahrscheinlichkeitsrechnung, Math. Ann. 104 (1931), 415–448.

    Article  MathSciNet  Google Scholar 

  28. A. Kolmogorov, Zur Umkehrbarkeit der Statistischen Naturgesetze, Math. Ann. 113 (1937), 766–772.

    Article  MathSciNet  MATH  Google Scholar 

  29. S. Kullback, A lower bound for discrimination information in terms of variation,IEEE Trans. Information Theory IT-13 (1967) 126–127.

    Google Scholar 

  30. S. Kusuoka and Y. Tamura, Gibbs measures for mean field potentials, J. Fac. Sci. Univ. Tokyo, Sec. IA Math. 31 (1984), 223–245.

    MathSciNet  MATH  Google Scholar 

  31. E. Lanford, Entropy and equilibrium states in classical statistical mechanics, In: Statistical Mechanics and Mathematical Problems, Lecture Notes in Phys. (A. Lenard, ed.), vol. 20, Springer-Verlag, Berlin, 1973, pp. 1–113.

    Google Scholar 

  32. H. P. McKean, A class of Markov processes associated with non-linear parabolic equations, Proc. Natl. Acad. Sci. 56 (1966), 1907–1911.

    Article  MathSciNet  MATH  Google Scholar 

  33. H. P. McKean, Propagation of chaos for a class of non-linear parabolic equations, Lecture Series in Differential Equations, Catholic Univ., 1967, pp. 41–57.

    Google Scholar 

  34. M. Nagasawa and H. Tanaka, Propagation of chaos for diffusing particles of two types with singular mean field interaction, Probab. Theory Relat. Fields 71 (1986), 69–83.

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Nagasawa and H. Tanaka, Diffusion with interactions and collisions between coloured particles and the propagation of chaos, Probab. Theory Relat. Fields 74 (1987), 161–198.

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Nagasawa and H. Tanaka, A proof of the propagation of chaos for diffusion processes with drift coefficients not of average form, Tokyo J. Math. 10 (1987), 403–418.

    MathSciNet  MATH  Google Scholar 

  37. M. Nagasawa, Transformations of diffusion and Schrödinger processes, Probab. Theory Relat. Fields 82 (1989), 109–136.

    Google Scholar 

  38. M. Nagasawa, Can the Schrödinger equation be a Boltzmann equation? Proceedings of the conference on diffusion processes and related problems in analysis, Northwestern Univ. (1989) (M. Pinsky, ed. ), Birkhäuser Boston Inc., 1990.

    Google Scholar 

  39. M. Nagasawa, Schrödinger equations and diffusion theory, Monographs in Mathematics, vol. 86, Birkhäuser Verlag, Basel, 1993.

    Google Scholar 

  40. M. Nagasawa, New Mathematical Foundations of Quantum Mechanics, Lecture Notes, University of Zürich, 1993.

    Google Scholar 

  41. E. Nelson, Dynamical Theories of Brownian Motion, Princeton University Press, 1967.

    Google Scholar 

  42. K. Olschläger, Many-particle Systems and the Continuum Description of Their Dynamics, Habilitation, Univ. Heidelberg, 1989.

    Google Scholar 

  43. E. Schrödinger, Über die Umkehrung der Naturgesetze, Sitzungsberichte der Preußischen Akademie der Wissenschaften, physikalisch-mathematische Klasse, 1931, pp. 144–153.

    Google Scholar 

  44. E. Schrödinger, Sur la théorie relativiste de l’électron et l’interprétation de la mécanique quantique, Ann. Inst. Henri Poincaré, vol. II, Paris, 1932, pp. 269–319.

    Google Scholar 

  45. A.-S. Sznitman, Topics in propagation of chaos, Ecole d’Eté de Probabilités de Saint Flour, 1989.

    Google Scholar 

  46. H. Tanaka, Limit theorems for certain diffusion processes with interaction, In: Stochastic Analysis ( K. Itô, ed.), Kinokuniya, Tokyo, 1984, pp. 469–488.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Basel AG

About this paper

Cite this paper

Aebi, R. (1995). Propagation of Chaos — The Inverse Problem. In: Bolthausen, E., Dozzi, M., Russo, F. (eds) Seminar on Stochastic Analysis, Random Fields and Applications. Progress in Probability, vol 36. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7026-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7026-9_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-7028-3

  • Online ISBN: 978-3-0348-7026-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics