Skip to main content

Algebraic Integral Geometry

  • Chapter
  • First Online:
Integral Geometry and Valuations

Abstract

Recent work of S. Alesker has catalyzed a flurry of progress in Blaschkean integral geometry and opened the prospect of further advances. By this term we understand the circle of ideas surrounding the kinematic formulas (Theorem 2.1.6 below), which express related fundamental integrals relating to the intersections of two subspaces K, L ⊂ ℝn in general position in terms of certain “total curvatures” of K and L separately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 24.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 34.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  1. Abardia, J., Gallego, E., and Solanes, G.: Gauss–Bonnet theorem and Crofton type formulas in complex space forms. Israel J. Math. 187 (2012), 287–315.

    Article  MathSciNet  MATH  Google Scholar 

  2. Alesker, S.: Description of translation invariant valuations on convex sets with solution of P. McMullen’s conjecture. Geom. Funct. Anal. 11 (2001), 244–272.

    Article  MathSciNet  MATH  Google Scholar 

  3. Alesker, S.: Algebraic structures on valuations, their properties and applications. In: Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), 757–764, Higher Ed. Press, Beijing, 2002.

    Google Scholar 

  4. Alesker, S.: Hard Lefschetz theorem for valuations, complex integral geometry, and unitarily invariant valuations. J. Differential Geom. 63 (2003), 63–95.

    MathSciNet  MATH  Google Scholar 

  5. Alesker, S.: The multiplicative structure on polynomial valuations. Geom. Funct. Anal. 14 (2004), 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  6. Alesker, S.: Hard Lefschetz theorem for valuations and related questions of integral geometry. In: Geometric aspects of functional analysis, 9–20, Lecture Notes in Math. 1850, Springer, Berlin, 2004.

    Google Scholar 

  7. Alesker, S.: Theory of valuations on manifolds I. Linear spaces. Israel J. Math. 156 (2006), 311–339.

    Article  MathSciNet  MATH  Google Scholar 

  8. Alesker, S.: Theory of valuations on manifolds II. Adv. Math. 207 (2006), 420–454.

    Article  MathSciNet  MATH  Google Scholar 

  9. Alesker, S.: Theory of valuations on manifolds IV. New properties of the multiplicative structure. Geometric Aspects of Functional Analysis, 1–44, Lecture Notes in Math. 1910, Springer, Berlin, 2007.

    Google Scholar 

  10. Alesker, S.: Valuations on manifolds: a survey. Geom. Funct. Anal. 17 (2007), 1321–1341.

    Article  MathSciNet  MATH  Google Scholar 

  11. Alesker, S.: A Fourier type transform on translation invariant valuations on convex sets. Israel J. Math. 181 (2011), 189–294.

    Article  MathSciNet  MATH  Google Scholar 

  12. Alesker, S. and Bernig, A.: The product on smooth and generalized valuations. Amer. J. of Math. 134 (2012), 507–560.

    Article  MathSciNet  MATH  Google Scholar 

  13. Alesker, S. and Bernstein, J.: Range characterization of the cosine transform on higher Grassmannians, Adv. Math. 184 (2004), 367–379.

    Article  MathSciNet  MATH  Google Scholar 

  14. Alesker, S. and Fu, J.H.G.: Theory of valuations on manifolds III. Multiplicative structure in the general case. Trans. Amer. Math. Soc. 360 (2008), 1951–1981.

    Article  MathSciNet  MATH  Google Scholar 

  15. ´Alvarez Paiva, J.C. and Fernandes, E.: Crofton formulas in projective Finsler spaces. Electron. Res. Announc. Amer. Math. Soc. 4 (1998), 91–100.

    Google Scholar 

  16. Bernig, A.: Scalar curvature of definable CAT-spaces. Adv. Geom. 3 (2003), 23–43.

    Article  MathSciNet  MATH  Google Scholar 

  17. Bernig, A.: Valuations with Crofton formula and Finsler geometry. Adv. Math. 210 (2007), 733–753.

    Article  MathSciNet  MATH  Google Scholar 

  18. Bernig, A.: A Hadwiger-type theorem for the special unitary group. Geom. Funct. Anal. 19 (2009), 356–372.

    Article  MathSciNet  MATH  Google Scholar 

  19. Bernig, A.: Integral geometry under G2 and Spin(7). Israel J. Math. 184 (2011), 301–316.

    Article  MathSciNet  MATH  Google Scholar 

  20. Bernig, A.: Invariant valuations on quaternionic vector spaces. J. Inst. Math. Jussieu 11 (2012), 467–499.

    Article  MathSciNet  MATH  Google Scholar 

  21. Bernig, A.: Algebraic integral geometry. In: Global Differential Geometry (C. Bär, J. Lohkamp and M. Schwarz, eds.), 107–145, Springer Proceedings in Math. Vol. 17, Springer, Berlin, 2012.

    Google Scholar 

  22. Bernig, A. and Bröcker, L.: Courbures intrins`eques dans les catégories analytico-géométriques. Ann. Inst. Fourier 53 (2003), 1897–1924.

    Article  MATH  Google Scholar 

  23. Bernig, A. and Bröcker, L.: Valuations on manifolds and Rumin cohomology. J. Differential Geom. 75 (2007), 433–457.

    MathSciNet  MATH  Google Scholar 

  24. Bernig, A. and Fu. J.H.G.: Convolution of convex valuations. Geom. Dedicata 123 (2006), 153–169.

    Google Scholar 

  25. Bernig, A. and Fu. J.H.G.: Hermitian integral geometry. Ann. of Math. 173 (2011), 907–945.

    Google Scholar 

  26. Bernig, A., Fu. J.H.G., and Solanes, G.: Integral geometry of complex space forms. Geom. Funct. Anal. 24 (2014), 403–492.

    Article  MathSciNet  MATH  Google Scholar 

  27. Bishop, R. and Crittenden, R.: Geometry of Manifolds. AMS Chelsea Publishing, Providence, 2001.

    Google Scholar 

  28. Bonnesen, T. and Fenchel, W.: Theorie der konvexen K ö rper. Springer, Berlin, 1934; Chelsea reprint, 1971.

    Google Scholar 

  29. Bröcker, L., Kuppe, M., and Scheufler, W.: Inner metric properties of 2-dimensional semi-algebraic sets. Real algebraic and analytic geometry (Segovia, 1995). Rev. Mat. Complut. 10 (1997), 51–78.

    Google Scholar 

  30. Chapoton, F.: Sur le nombre d’intervalles dans les treillis de Tamari. S é m. Lothar. Combin. 55 (2005/07), Art. B55f, 18 pp.

    Google Scholar 

  31. Cheeger, J., Müller, W., and Schrader, R.: On the curvature of piecewise flat spaces. Comm. Math. Phys. 92 (1984), 405–454.

    Article  MathSciNet  MATH  Google Scholar 

  32. Cheeger, J., Müller, W., and Schrader, R.: Kinematic and tube formulas for piecewise linear spaces. Indiana Univ. Math. J. 35 (1986), 737–754.

    Article  MathSciNet  MATH  Google Scholar 

  33. Chern, S.-S.: On the kinematic formula in integral geometry. J. Math. Mech. 16 (1966), 101–118.

    MathSciNet  MATH  Google Scholar 

  34. Federer, H.: Curvature measures. Trans. Amer. Math. Soc. 93 (1959), 418–491.

    Article  MathSciNet  MATH  Google Scholar 

  35. Fu, J.H.G.: Monge–Ampère functions I, II. Indiana Univ. Math. J. 38 (1989), 745–789.

    Article  MATH  Google Scholar 

  36. Fu, J.H.G.: Kinematic formulas in integral geometry. Indiana Univ. Math. J. 39 (1990), 1115–1154.

    Article  MathSciNet  MATH  Google Scholar 

  37. Fu, J.H.G.: Curvature measures of subanalytic sets. Amer. J. Math. 116 (1994), 819–880.

    Article  MathSciNet  MATH  Google Scholar 

  38. Fu, J.H.G.: Stably embedded surfaces of bounded integral curvature. Adv. Math. 152 (2000), 28–71

    Article  MathSciNet  MATH  Google Scholar 

  39. Fu, J.H.G.: Intrinsic diameter and curvature integrals of surfaces immersed in Rn. Indiana Univ. Math. J. 53 (2004), 269–296

    Article  MathSciNet  MATH  Google Scholar 

  40. Fu, J.H.G.: Structure of the unitary valuation algebra. J. Differential Geom. 72 (2006), 509–533.

    MathSciNet  MATH  Google Scholar 

  41. Fu, J.H.G.: Integral geometry and Alesker’s theory of valuations. In: Integral Geometry and Convexity: Proceedings of the International Conference, Wuhan, China, 18 23 October 2004, 17–28,World Scientific, Singapore, 2006.

    Google Scholar 

  42. Gessel, I.: Personal email communications, 2008–09.

    Google Scholar 

  43. Gray, A.: Tubes. Progr. Math. 221. Birkhäuser Verlag, Basel, 2004.

    Google Scholar 

  44. Griffiths, P. and Harris, J.: Principles of Algebraic Geometry. Wiley, New York, 1978.

    Google Scholar 

  45. Hadwiger, H.: Vorlesungen ü ber Inhalt, Oberfl ä che und Isoperimetrie. Springer, Berlin, 1957.

    Google Scholar 

  46. Howard, R.: The kinematic formula in Riemannian homogeneous spaces. Mem. Amer. Math. Soc. 509 (1993).

    Google Scholar 

  47. Kang, H. J. and Tasaki, H.: Integral geometry of real surfaces in the complex projective plane. Geom. Dedicata 90 (2002), 99–106.

    Article  MathSciNet  MATH  Google Scholar 

  48. Klain, D.: Even valuations on convex bodies. Trans. Amer. Math. Soc. 352 (2000), 71–93.

    Article  MathSciNet  MATH  Google Scholar 

  49. Klain, D. and Rota, G.-C.: Introduction to Geometric Probability. Lezione Lincee, Cambridge University Press, 1997.

    Google Scholar 

  50. Kobayashi, S. and Nomizu, K.: Foundations of Differential Geometry, vol. II. Interscience, New York, 1969.

    MATH  Google Scholar 

  51. McMullen, P.: Valuations and Euler-type relations on certain classes of convex polytopes. Proc. London Math. Soc. 35 (1977), 113–135.

    Article  MathSciNet  MATH  Google Scholar 

  52. Nijenhuis, A.: On Chern’s kinematic formula in integral geometry. J. Differential Geom. 9 (1974), 475–482.

    MathSciNet  MATH  Google Scholar 

  53. Park, H.: Kinematic formulas for the real subspaces of complex space forms of dimension 2 and 3. Ph.D. thesis, University of Georgia, 2002.

    Google Scholar 

  54. Petkovsek, M., Wilf, H., and Zeilberger, D.: A = B. A K Peters, Wellesley, 1996.

    Google Scholar 

  55. Rumin, M.: Formes différentielles sur les variétés de contact. J. Differential Geom. 39 (1994), 281–330.

    MathSciNet  MATH  Google Scholar 

  56. Santaló, L. A.: Integral Geometry and Geometric Probability. Cambridge University Press, 1978.

    Google Scholar 

  57. Schneider, R.: Convex Bodies: the Brunn Minkowski Theory. Cambridge University Press, 1993.

    Google Scholar 

  58. Solanes, G.: Integral geometry and the Gauss–Bonnet theorem in constant curvature spaces. Trans. Amer. Math. Soc. 358 (2006), 1105–1115.

    Article  MathSciNet  MATH  Google Scholar 

  59. Tasaki, H.: Generalization of Kähler angle and integral geometry in complex projective spaces. In: Steps in Differential Geometry (Debrecen, 2000), 349–361, Inst. Math. Inform., Debrecen, 2001.

    Google Scholar 

  60. Tasaki, H.: Generalization of Kähler angle and integral geometry in complex projective spaces II. Math. Nachr. 252 (2003), 106–112.

    Article  MathSciNet  MATH  Google Scholar 

  61. Teufel, E.: Anwendungen der differentialtopologischen Berechnung der totalen Krümmung und totalen Absolutkrümmung in der sphärischen Differentialgeometrie, Manuscripta Math. 32 (1980), 239–262.

    Article  MathSciNet  MATH  Google Scholar 

  62. Thompson, A.C.: Minkowski Geometries. Encyclopedia Math. Appl., vol. 63, Cambridge University Press, 1996.

    Google Scholar 

  63. Weyl, H.: On the volume of tubes. Amer. J. Math. 61 (1939), 461–472.

    Article  MathSciNet  Google Scholar 

  64. Wilf, H.: Generatingfunctionology, Third edition, A K Peters, Wellesley, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this chapter

Cite this chapter

Fu, J.H.G. (2014). Algebraic Integral Geometry. In: Gallego, E., Solanes, G. (eds) Integral Geometry and Valuations. Advanced Courses in Mathematics - CRM Barcelona. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0874-3_2

Download citation

Publish with us

Policies and ethics