Skip to main content

Numerical Simulation of Fluid–Structure Interaction Problems with Applications to Flow in Vocal Folds

  • Chapter
  • First Online:
Fluid-Structure Interaction and Biomedical Applications

Abstract

Recently, the numerical solution of FSI problems has become important also in biomechanics, among others in voice modelling. The numerical analysis of this case is very complicated: Human voice is created by passage of air flow between vocal folds, where the constriction formed by the vocal folds induces acceleration of the flow and vocal fold oscillations, which generates the sound. The modelling of such a complex phenomenon encounters many difficulties as it is a result of coupling complex fluid dynamics and structural behavior. We focus on mathematical and numerical modelling of nonlinear coupled problems of fluid–structure interactions (FSI). The main attention is paid to the mathematical description of a relevant problem and to the description of the applied numerical methods. The mathematical description consists of the elasticity equations describing the motion of an elastic structure, and the air flow modelled by the Navier–Stokes equations. Both models are coupled via interface conditions.

The solution of dynamic elasticity equations is realized with the aid of conforming finite elements or the elastic structure motion is modelled by a simplified model of vibrating rigid body. Both compressible and incompressible fluid model is considered. The approximation of flow in moving domains is treated with the aid of the arbitrary Lagrangian–Eulerian method. The incompressible Navier–Stokes equations are approximated by the stabilized finite element method. The compressible Navier–Stokes equations are discretized by the discontinuous Galerkin finite element method. The time discretization based on a semi-implicit linearized scheme is described and the solution of the coupled problem of FSI is realized by a coupling algorithm.

MSC2010: 74F10, 76Z05, 76M10, 74S05, 74H15

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Adachi, H. Takemoto, T. Kitamura, P. Mokhtari, K. Honda, Vocal tract length perturbation and its application to male-female vocal tract shape conversion. J. Acoust. Soc. Am. 121, 3874–3885 (2007)

    Google Scholar 

  2. F. Alipour, R.C. Scherer, Flow separation in a computational oscillating vocal fold model. J. Acoust. Soc. Am. 116(3), 1710–1719 (2004)

    Google Scholar 

  3. F. Alipour, C. Fan, R.C. Scherer, A numerical simulation of laryngeal flow in a forced-oscillation glottal model. Comput. Speech Lang. 10, 1637–1644 (1996)

    Google Scholar 

  4. F. Alipour, C. Brucker, D. Cook, A. Gommel, M. Kaltenbacher, W. Mattheus, Mathematical models and numerical schemes for the simulation of human phonation. Curr. Bioinform. 6(3), 323–343 (2011)

    Google Scholar 

  5. P. Alku, J. Horáček, M. Airas, F. Griffond-Boitier, A.M. Laukkanen, Performance of glottal inverse filtering as tested by aeroelastic modelling of phonation and FE modelling of vocal tract. Acta Acust. United Acust. 92(5), 717–724 (2006)

    Google Scholar 

  6. D.N. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)

    MathSciNet  MATH  Google Scholar 

  7. D.N. Arnold, F. Brezzi, B. Cockburn, D. Marini, Discontinuos Galerkin methods for elliptic problems, in Discontinuous Galerkin Methods. Theory, Computation and Applications, ed. by B. Cockburn et al. Lecture Notes in Computational Science and Engineering, vol. 11 (Springer, Berlin, 2000), pp. 89–101

    Google Scholar 

  8. D.N. Arnold, F. Brezzi, B. Cockburn, D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2001)

    MathSciNet  Google Scholar 

  9. Y. Bae, Y.J. Moon, Computation of phonation aeroacoustics by an INS/PCE splitting method. Comput. Fluids 37(10), 1332–1343 (2008)

    MATH  Google Scholar 

  10. R.J. Baken, R.F. Orlikoff, Clinical Measurement of Speech and Voice, 2nd edn. (Singular Publishing Group, San Diego, 2000)

    Google Scholar 

  11. F. Bassi, S. Rebay, High-order accurate discontinuous finite element solution of the 2D Euler equations. J. Comput. Phys. 138, 251–285 (1997)

    MathSciNet  MATH  Google Scholar 

  12. C.E. Baumann, J.T. Oden, A discontinuous hp finite element method for the Euler and Navier-Stokes equations. Int. J. Numer. Methods Fluids 31, 79–95 (1999)

    MathSciNet  MATH  Google Scholar 

  13. S. Becker, S. Kniesburges, S. Mller, A. Delgado, G. Link, M. Kaltenbacher, Flow-structure-acoustic interaction in a human voice model. J. Acoust. Soc. Am. 125(3), 1351–1361 (2009)

    Google Scholar 

  14. J. Brandts, M. Křížek, Gradient superconvergence on uniform simplicial partitions of polytopes. IMA J. Numer. Anal. 23(3), 489–505 (2003)

    MathSciNet  MATH  Google Scholar 

  15. R. Brepta, L. Půst, F. Turek, Mechanical Vibrations (Sobotáles, Praha, 1994, in Czech)

    Google Scholar 

  16. Ch.-H. Bruneau, P. Fabrie, Effective downstream boundary conditions for incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 19(8), 693–705 (1994)

    MATH  Google Scholar 

  17. J. Česenek, M. Feistauer, J. Horáček, V. Kučera, J. Prokopová, Simulation of compressible viscous flow in time-dependent domains. Appl. Math. Comput. 13, 7139–7150 (2013)

    Google Scholar 

  18. A. Curnier, Computational Methods in Solid Mechanics (Kluwer Academic Publishing Group, Dodrecht, 1994)

    MATH  Google Scholar 

  19. T.A. Davis, I.S. Duff, A combined unifrontal/multifrontal method for unsymmetric sparse matrices. ACM Trans. Math. Softw. 25, 1–19 (1999)

    MathSciNet  MATH  Google Scholar 

  20. A. de Boer, M.S. van der Schoot, H. Bijl, Mesh deformation based on radial basis function interpolation. Comput. Struct. 85, 784–795 (2007)

    Google Scholar 

  21. R.M. de Oliviera, J. Pereira, M. Grellet, A. Alwan, A contribution to simulating a three-dimensional larynx model using the finite element method. J. Acoust. Soc. Am. 114(5), 2893–2905 (2003)

    Google Scholar 

  22. M.P. de Vries, H.K. Shutte, A.E.P. Veldman, G.J. Verkerke, Glottal flow through a two-mass model: comparison of Navier–Stokes solutions with simplified models. J. Acoust. Soc. Am. 111(4), 1847–1853 (2002)

    Google Scholar 

  23. V. Dolejší, Semi-implicit interior penalty discontinuous Galerkin methods for viscous compressible flows. Commun. Comput. Phys. 4, 231–274 (2008)

    MathSciNet  Google Scholar 

  24. V. Dolejší, M. Feistauer, A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow. J. Comput. Phys. 198, 727–746 (2004)

    MathSciNet  MATH  Google Scholar 

  25. V. Dolejší, M. Feistauer, Error estimates of the discontinuous Galerkin method for nonlinear nonstationary convection-diffusion problems. Numer. Funct. Anal. Optim. 26, 349–383 (2005)

    MathSciNet  MATH  Google Scholar 

  26. V. Dolejší, M. Feistauer, C. Schwab, On some aspects of the discontinuous Galerkin finite element method for conservation laws. Math. Comput. Simul. 61, 333–346 (2003)

    MATH  Google Scholar 

  27. B. Erath, M. Plesniak, An investigation of asymmetric flow features in a scaled-up driven model of the human vocal folds. Exp. Fluids 49(1), 131–146 (2010)

    Google Scholar 

  28. G. Fant, Acoustic Theory of Speech Production, 2nd edn. (Mouton, S’Gravenage, 1960)

    Google Scholar 

  29. M. Feistauer, Mathematical Methods in Fluid Dynamics (Longman Scientific & Technical, Harlow, 1993)

    MATH  Google Scholar 

  30. M. Feistauer, V. Kučera, On a robust discontinuous Galerkin technique for the solution of compressible flow. J. Comput. Phys. 224, 208–221 (2007)

    MathSciNet  MATH  Google Scholar 

  31. M. Feistauer, J. Felcman, J. Straškraba, Mathematical and Computational Methods for Compressible Flow (Clarendon Press, Oxford, 2003)

    MATH  Google Scholar 

  32. M. Feistauer, V. Dolejší, V. Kučera, On the discontinuous Galerkin method for the simulation of compressible flow with wide range of mach numbers. Comput. Vis. Sci. 10, 17–27 (2007)

    MathSciNet  Google Scholar 

  33. M. Feistauer, J. Hasnedlová-Prokopová, J. Horáček, A. Kosík, V. Kučera, DGFEM for dynamical systems describing interaction of compressible fluid and structures. J. Comput. Appl. Math. 254, 17–30 (2013)

    MathSciNet  MATH  Google Scholar 

  34. T. Gelhard, G. Lube, M.A. Olshanskii, J.-H. Starcke, Stabilized finite element schemes with LBB-stable elements for incompressible flows. J. Comput. Appl. Math. 177, 243–267 (2005)

    MathSciNet  MATH  Google Scholar 

  35. V. Girault, P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations (Springer, Berlin, 1986)

    MATH  Google Scholar 

  36. P.M. Gresho, R.L. Sani, Incompressible Flow and the Finite Element Method (Wiley, Chichester, 1998)

    MATH  Google Scholar 

  37. J. Hasnedlová-Prokopová, M. Feistauer, J. Horáček, A. Kosík, V. Kučera, Numerical simulation of fluid-structure of compressible flow and elastic structure. Computing 95, 573–585 (2013)

    MathSciNet  Google Scholar 

  38. J.G. Heywood, R. Rannacher, S. Turek, Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Math. Fluids 22, 325–352 (1992)

    MathSciNet  Google Scholar 

  39. J. Horáček, J.G. Švec, Aeroelastic model of vocal-fold-shaped vibrating element for studying the phonation threshold. J. Fluids Struct. 16(7), 931–955 (2002)

    Google Scholar 

  40. J. Horáček, J.G. Švec, Instability boundaries of a vocal fold modelled as a flexibly rigid body vibrating in a channel conveying fluid. Am. Soc. Mech. Eng. Appl. Mech. Div. AMD 253(2), 1043–1054 (2002)

    Google Scholar 

  41. J. Horáček, P. Šidlof, J.G. Švec, Numerical simulation of self-oscillations of human vocal folds with Hertz model of impact forces. J. Fluids Struct. 20(6), 853–869 (2005)

    Google Scholar 

  42. J. Horáček, A.M. Laukkanen, P. Šidlof, Estimation of impact stress using an aeroelastic model of voice production. Logoped. Phoniatr. Vocol. 37, 185–192 (2007)

    Google Scholar 

  43. J. Horáček, A.M. Laukkanen, P. Šidlof, J.G. Švec, Comparison of acceleration and impact stress as possible loading factors in phonation: a computer modeling study. Folia Phoniatr. Logop. 61(3), 137–145 (2009)

    Google Scholar 

  44. J. Horáček, V. Uruba, V. Radolf, J. Veselý, V. Bula, Airflow visualization in a model of human glottis near the self-oscillating vocal folds model. Appl. Comput. Mech. 5, 21–28 (2011)

    Google Scholar 

  45. K. Ishizaka, J.L. Flanagan, Synthesis of voiced sounds from a two-mass model of the vocal coords. Bell Syst. Tech. J. 51, 1233–1268 (1972)

    Google Scholar 

  46. S. Kniesburges, S.L. Thomson, A. Barney, M. Triep, P. Šidlof, J. Horáček, In vitro experimental investigation of voice production. Curr. Bioinform. 6(3), 305–322 (2011)

    Google Scholar 

  47. A. Kosík, M. Feistauer, J. Horáček, P. Sváček, Numerical simulation of interaction of an elastic body and fluid flow, in Proceedings of the Interaction and Feedbacks 2010 (Institute of Thermomechanics, Prague, 2010), pp. 49–56

    Google Scholar 

  48. A. Kosík, M. Feistauer, J. Horáček, P. Sváček, Numerical simulation of interaction of human vocal folds and fluid flow, in Vibration Problems ICOVP 2011, ed. by J. Náprstek, J. Horáček, M. Okrouhlík (Springer, Berlin, 2011), pp. 765–771

    Google Scholar 

  49. M. Krane, M. Barry, T. Wei, Unsteady behavior of flow in a scaled-up vocal folds model. J. Acoust. Soc. Am. 122(6), 3659–3670 (2007)

    Google Scholar 

  50. F. Krebs, F. Silva, D. Sciamarella, G. Artana, A three-dimensional study of the glottal jet. Exp. Fluids 52, 1–15 (2002)

    Google Scholar 

  51. B.R. Kucinschi, R.C. Scherer, K.J. DeWitt, T.T.M. Ng, An experimental analysis of the pressures and flows within a driven mechanical model of phonation. J. Acoust. Soc. Am. 119(5), 3011–3021 (2006)

    Google Scholar 

  52. G. Link, M. Kaltenbacher, M. Breuer, M. Döllinger, A 2D finite element scheme for fluid-solid-acoustic interactions and its application to human phonation. Comput. Methods Appl. Mech. Eng. 198, 3321–3334 (2009)

    MATH  Google Scholar 

  53. G. Lube, Stabilized Galerkin finite element methods for convection dominated and incompressible flow problems. Numer. Anal. Math. Model. 29, 85–104 (1994)

    MathSciNet  Google Scholar 

  54. J. Lucero, Dynamics of the two-mass model of the vocal folds: equilibria, bifurcations, and oscillation region. J. Acoust. Soc. Am. 94(6), 3104–3111 (1993)

    Google Scholar 

  55. H. Luo, R. Mittal, X. Zheng, S.A. Bielamowicz, R.J. Walsh, J.K. Hahn, An immersed boundary method for flow-structure interaction in biological systems with application to phonation. J. Comput. Phys. 227(22), 9303–9332 (2008)

    MathSciNet  MATH  Google Scholar 

  56. W. Mattheus, C. Brücker, Asymmetric glottal jet deflection: differences of two and three-dimensional models. J. Acoust. Soc. Am. 130(6), EL3739 (2011)

    Google Scholar 

  57. R. Mittal, B.D. Erath, M.W. Plesniak, Fluid dynamics of human phonation and speech. Ann. Rev. Fluid Mech. 45, 437–467 (2013)

    MathSciNet  Google Scholar 

  58. J. Neubauer, Z. Zhang, R. Miraghaie, D. Berry, Coherent structures of the near field flow in a self-oscillating physical model of the vocal folds. J. Acoust. Soc. Am. 121(2), 1102–1118 (2007)

    Google Scholar 

  59. T. Nomura, T.J.R. Hughes, An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body. Comput. Methods Appl. Mech. Eng. 95, 115–138 (1992)

    MATH  Google Scholar 

  60. M.P. Norton, Fundamentals of Noise and Vibration Analysis for Engineers (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  61. X. Pelorson, A. Hirschberg, R. van Hassel, A. Wijnands, Y. Auregan, Theoretical and experimental study of quasisteady-flow separation within the glottis during phonation: application to a modified two-mass model. J. Acoust. Soc. Am. 96(6), 3416–3431 (1994)

    Google Scholar 

  62. P. Pořízková, K. Kozel, J. Horáček, Flows in convergent channel: comparison of numerical results of different mathematical models. Computing 95, 573–585 (2013)

    MathSciNet  Google Scholar 

  63. P. Punčochářová, J. Fürst, K. Kozel, J. Horáček, Numerical solution of compressible flow with low Mach number through oscillating glottis, in Proceedings of the 9th International Conference on Flow-Induced Vibration (FIV 2008) (Institute of Thermomechanics AS CR, Prague, 2008), pp. 135–140

    Google Scholar 

  64. P. Punčochářová-Pořízková, J.Fürst, J. Horáček, K. Kozel, Numerical solutions of unsteady flows with low inlet Mach numbers. Math. Comput. Simul. 80(8), 1795–1805 (2010)

    MATH  Google Scholar 

  65. P. Punčochářová-Pořízková, K. Kozel, J. Horáček, Simulation of unsteady compressible flow in a channel with vibrating walls influence of the frequency. Comput. Fluids 46(1), 404–410 (2011)

    MathSciNet  MATH  Google Scholar 

  66. C. Renotte, V. Bouffioux, F. Wilquem, Numerical 3D analysis of oscillatory flow in the time-varying laryngeal channel. J. Biomech. 33(12), 1637–1644 (2000)

    Google Scholar 

  67. D. Sciamarella, C. dAlessandro, On the acoustic sensitivity of a symmetrical two-mass model of the vocal folds to the variation of control parameters. Acta Acust. United Acust. 90, 746–761 (2004)

    Google Scholar 

  68. D. Sciamarella, P.L. Qur, Solving for unsteady airflow in a glottal model with immersed moving boundaries. Eur. J. Mech. B/Fluids 27, 42–53 (2008)

    MathSciNet  MATH  Google Scholar 

  69. J.H. Seo, R. Mittal, A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries. J. Comput. Phys. 230(4), 1000–1019 (2011)

    MathSciNet  MATH  Google Scholar 

  70. P. Šidlof, J.G. Švec, J. Horáček, J. Veselý, I. Klepáček, R. Havlík, Geometry of human vocal folds and glottal channel for mathematical and biomechanical modeling of voice production. J. Biomech. 41, 985–995 (2008)

    Google Scholar 

  71. P. Šidlof, O. Doaré, O. Cadot, A. Chaigne, Measurement of flow separation in a human vocal folds model. Exp. Fluids 51(1), 123–136 (2011)

    Google Scholar 

  72. P. Šidlof, J. Horáček, V. Řidký, Parallel CFD simulation of flow in a 3D model of vibrating human vocal folds. Comput. Fluids 80, 290–300 (2013)

    MathSciNet  MATH  Google Scholar 

  73. P. Šidlof, S. Zörner, A. Hüppe, Numerical simulation of flow-induced sound in human voice production, Procedia Eng. 61(0), 333–340 (2013)

    Google Scholar 

  74. B.H. Story, Technique for ‘tuning’ vocal tract area functions based on acoustic sensitivity functions. J. Acoust. Soc. Am. 119, 715–718 (2006)

    Google Scholar 

  75. B. Story, I. Titze, Voice simulation with a body-cover model of the vocal folds. J. Acoust. Soc. Am. 97(2), 1249–1260 (1995)

    Google Scholar 

  76. B.H. Story, I.R. Titze, Parameterization of vocal tract area functions by empirical orthogonal modes. J. Phon. 26, 223–260 (1998)

    Google Scholar 

  77. B.H. Story, I.R. Titze, E.A. Hoffman, Vocal tract area functions from magnetic resonance imaging. J. Acoust. Soc. Am. 100, 537–554 (1996)

    Google Scholar 

  78. J. Suh, S. Frankel, Numerical simulation of turbulence transition and sound radiation for flow through a rigid glottal model. J. Acoust. Soc. Am. 121(6), 3728–3739 (2007)

    Google Scholar 

  79. J. Sundberg, The Science of the Singing Voice (Northern Illinois University Press, DeKalb, 1987)

    Google Scholar 

  80. P. Sváček, Numerical approximation of flow induced vibrations of channel walls. Comput. Fluids 46(1), 448–454 (2011)

    MathSciNet  MATH  Google Scholar 

  81. P. Sváček, M. Feistauer, Application of a stabilized FEM to problems of aeroelasticity, in Numerical Mathematics and Advanced Application (Springer, Berlin, 2004), pp. 796–805

    Google Scholar 

  82. P. Sváček, J. Horáček, Numerical approximation of flow induced vibration of vocal folds, in BAIL 2010 - Boundary and Interior Layers, Computational and Asymptotic Methods (Springer, Berlin, 2011), pp. 227–234

    Google Scholar 

  83. P. Sváček, J. Horáček, Numerical simulation of glottal flow in interaction with self oscillating vocal folds: comparison of finite element approximation with a simplified model. Commun. Comput. Phys. 12(3), 789–806 (2012)

    Google Scholar 

  84. P. Švancara, J. Horáček, Numerical modelling of effect of tonsillectomy on production of Czech vowels. Acta Acust. United Acust. 92(5), 681–688 (2006)

    Google Scholar 

  85. P. Švancara, J. Horáček, V. Hr˚uza, FE modelling of the fluid-structure-acoustic interaction for the vocal folds self-oscillation, in Vibration Problems ICOVP 2011, ed. by J. Náprstek, J. Horáček, M. Okrouhlík (Springer, Berlin, 2011), pp. 801–807

    Google Scholar 

  86. P. Švancara, J. Horáček, J.G. Švec, Simulation of the self-oscillations of the vocal folds and of the resulting acoustic phenomena in the vocal tract, in Advances in Mechanisms Design, vol. 8, ed. by J. Beran, M. Bílek, M. Hejnová, P. Žabka (Springer, Dordrecht, 2012), pp. 357–363

    Google Scholar 

  87. C. Tao, J. Jiang, Mechanical stress during phonation in a self-oscillating finite element vocal fold model. J. Biomech. 40(10), 2191–2198 (2007)

    Google Scholar 

  88. C. Tao, Y. Zhang, D. Hottinger, J. Jiang, Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds. J. Acoust. Soc. Am. 122(4), 2270–2278 (2007)

    Google Scholar 

  89. S. Thomson, L. Mongeau, S. Frankel, Aerodynamic transfer of energy to the vocal folds. J. Acoust. Soc. Am. 118(3 Pt 1), 1689–1700 (2005)

    Google Scholar 

  90. S. Thomson, J. Tack, G. Verkerke, A numerical study of the flow-induced vibration characteristics of a voice-producing element for laryngectomized patients. J. Biomech. 40, 3598–3606 (2007)

    Google Scholar 

  91. I.R. Titze, Principles of Voice Production (Prentice-Hall, Englewood Cliffs, 1994)

    Google Scholar 

  92. I.R. Titze, The Myoelastic Aerodynamic Theory of Phonation (National Center for Voice and Speech, Denver, 2006)

    Google Scholar 

  93. I.R. Titze, Nonlinear source-filter coupling in phonation: theory. J. Acoust. Soc. Am. 123, 2733–2749 (2008)

    Google Scholar 

  94. M. Triep, C. Brücker, W. Schröder, High-speed PIV measurements of the flow downstream of a dynamic mechanical model of the human vocal folds. Exp. Fluids 39, 232–245 (2005)

    Google Scholar 

  95. T. Vampola, J. Horáček, J. Vokřál, FE modeling of human vocal tract acoustics. Part II: influence of velopharyngeal insufficiency on phonation of vowels. Acta Acust. United Acust. 94, 448–460 (2008)

    Google Scholar 

  96. T. Vampola, J. Horáček, J. Švec, FE modeling of human vocal tract acoustics. Part I: production of Czech vowels. Acta Acust. United Acust. 94, 433–447 (2008)

    Google Scholar 

  97. J.J.W. van der Vegt, H. van der Ven, Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flow. J. Comput. Phys. 182, 546–585 (2002)

    MathSciNet  MATH  Google Scholar 

  98. R. Verfürth, Error estimates for mixed finite element approximation of the Stokes equations. R.A.I.R.O. Anal. Numer. Anal. 18, 175–182 (1984)

    Google Scholar 

  99. G. Vijayasundaram, Transonic flow simulation using upstream centered scheme of Godunov type in finite elements. J. Comput. Phys. 63, 416–433 (1986)

    MathSciNet  MATH  Google Scholar 

  100. Z. Yang, D.J. Mavriplis, Unstructured dynamic meshes with higher-order time integration schemes for the unsteady Navier-Stokes equations, in 43rd AIAA Aerospace Sciences Meeting, Reno (January 2005), 13 pp. (AIAA Paper 2005-1222)

    Google Scholar 

  101. A. Yang, J. Lohscheller, D.A. Berry, S. Becker, U. Eysholdt, D. Voigt, Biomechanical modeling of the three-dimensional aspects of human vocal fold dynamics. J. Acoust. Soc. Am. 127(2), 1014–1031 (2010)

    Google Scholar 

  102. Z. Zhang, Influence of flow separation location on phonation onset. J. Acoust. Soc. Am. 124(3), 1689–1694 (2008)

    Google Scholar 

  103. Z. Zhang, J. Neubauer, D. Berry, Physical mechanisms of phonation onset: a linear stability analysis of an aeroelastic continuum model of phonation. J. Acoust. Soc. Am. 122, 2279–2295 (2007)

    Google Scholar 

  104. W. Zhao, C. Zhang, S. Frankel, L. Mongeau, Computational aeroacoustics of phonation, part I: computational methods and sound generation mechanisms. J. Acoust. Soc. Am. 112, 2134–2146 (2002)

    Google Scholar 

  105. X. Zheng, S. Bielamowicz, H. Luo, R. Mittal, A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation. Ann. Biomed. Eng. 37(3), 625–642 (2009)

    Google Scholar 

  106. X. Zheng, Q. Xue, R. Mittal, S. Bielamowicz, A coupled sharp-interface immersed boundary-finite-element method for flow-structure interaction with application to human phonation. J. Biomech. Eng. 132(11), 111003 (2010)

    Google Scholar 

  107. X. Zheng, R. Mittal, S. Bielamowicz, A computational study of asymmetric glottal jet deflection during phonation. J. Acoust. Soc. Am. 129(4), 2133–2143 (2011)

    Google Scholar 

  108. X. Zheng, R. Mittal, Q. Xue, S. Bielamowicz, Direct-numerical simulation of the glottal jet and vocal-fold dynamics in a three-dimensional laryngeal model. J. Acoust. Soc. Am. 130(1), 404–415 (2011)

    Google Scholar 

  109. O.C. Zienkiewicz, J.Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int. J. Numer. Methods Eng. 33, 1331–1364 (1992)

    Google Scholar 

Download references

Acknowledgements

This research was supported by grants No. 13-00522S and No. P101/11/0207 of the Czech Science Foundation. M. Feistauer acknowledges his membership in the Nečas Center for Mathematical Modeling (http://ncmm.karlin.mff.cuni.cz).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloslav Feistauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this chapter

Cite this chapter

Feistauer, M., Sváček, P., Horáček, J. (2014). Numerical Simulation of Fluid–Structure Interaction Problems with Applications to Flow in Vocal Folds. In: Bodnár, T., Galdi, G., Nečasová, Š. (eds) Fluid-Structure Interaction and Biomedical Applications. Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0822-4_5

Download citation

Publish with us

Policies and ethics