Skip to main content

Topics in the Mathematical Theory of Interactions of Incompressible Viscous Fluid with Rigid Bodies

  • Chapter
  • First Online:
Fluid-Structure Interaction and Biomedical Applications

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

Abstract

In this paper, we review recent results devoted to the interactions between a collection of rigid bodies \((\mathcal{B}_{i})_{i=1,\ldots,n}\) and a surrounding viscous fluid \(\mathcal{L}\), the whole system filling a container \(\Omega \). We assume that the motion of \(\mathcal{L}\) (resp. the rigid bodies \(\mathcal{B}_{i}\)) is governed by the incompressible Navier Stokes equations (resp. Newton laws), and that velocities and stress tensors are continuous at the fluid/body interfaces. Our concern is the well-posedness of the associated Cauchy problem, with a specific eye towards the handling of contact between bodies or between one body and the container boundary.

MSC2010: 35Q35, 35B44, 35Q74, 74F10, 76D03, 76D05

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Angot, C.-H. Bruneau, P. Fabrie, A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math. 81(4), 497–520 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Barnocky, R.H. Davis, The influence of pressure-dependent density and viscosity on the elastohydrodynamic collision and rebound of two spheres. J. Fluid Mech. 209, 501–519 (1989)

    Article  Google Scholar 

  3. H. Brenner, The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Eng. Sci. 16, 242–251 (1961)

    Article  Google Scholar 

  4. C. Bost, G.-H. Cottet, E. Maitre, Convergence analysis of a penalization method for the three-dimensional motion of a rigid body in an incompressible viscous fluid. SIAM J. Numer. Anal. 48(4), 1313–1337 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Conca, J.A. San Martín, M. Tucsnak, Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid. Commun. Partial Differ. Equ. 25(5–6), 1019–1042 (2000)

    MATH  Google Scholar 

  6. M.D.A. Cooley, M.E. O’Neill, On the slow rotation of a sphere about a diameter parallel to a nearby plane wall. J. Inst. Math. Appl. 4, 163–173 (1968)

    Article  MATH  Google Scholar 

  7. M.D.A. Cooley, M.E. O’Neill, On the slow motion generated in a viscous fluid by the approach of a sphere to a plane wall or stationary sphere. Mathematika 16, 37–49 (1969)

    Article  MATH  Google Scholar 

  8. P. Cumsille, T. Takahashi, Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid. Bol. Soc. Esp. Mat. Apl. S\({\boldsymbol{\mathrm{e}}}\) MA 41, 117–126 (2007)

    Google Scholar 

  9. P. Cumsille, T. Takahashi, Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid. Czechoslov. Math. J. 58, 961–992 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. R.G. Cox, The motion of suspended particles almost in contact. Int. J. Multiphase Flow 1, 343–371 (1974)

    Article  MATH  Google Scholar 

  11. M. Dashti, J.C. Robinson, The motion of a fluid-rigid disc system at the zero limit of the rigid disc radius. Arch. Ration. Mech. Anal. 200(1), 285–312 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. R.H. Davis, J.-M. Serayssol, E. Hinch, The elastohydrodynamic collision of two spheres. J. Fluid Mech. 163, 479–497 (1986)

    Article  Google Scholar 

  13. W.R. Dean, M.E. O’Neill, A slow motion of viscous liquid caused by the rotation of a solid sphere. Mathematika 10, 13–24 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Decoene, S. Martin, B. Maury, Microscopic modelling of active bacterial suspensions. Math. Model. Nat. Phenom. 6(5), 98–129 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Desjardins, M.J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146(1), 59–71 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Desjardins, M.J. Esteban, On weak solutions for fluid-rigid structure interaction: compressible and incompressible models. Commun. Partial Differ. Equ. 25(7–8), 1399–1413 (2000)

    MathSciNet  MATH  Google Scholar 

  17. L. Desvillettes, F. Golse, V. Ricci, The mean-field limit for solid particles in a Navier-Stokes flow. J. Stat. Phys. 131(5), 941–967 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. R.J. DiPerna, P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Ervedoza, M. Hillairet, C. Lacave, Long-time behavior for the two-dimensional motion of a dsk in a viscous fluid. Commun. Math. Phys. (2012, to appear). fr.arxiv.org/pdf/1301.4420

  20. E. Feireisl, On the motion of rigid bodies in a viscous incompressible fluid. J. Evol. Equ. 3(3), 419–441 (2003). Dedicated to Philippe Bénilan

    Google Scholar 

  21. E. Feireisl, On the motion of rigid bodies in a viscous compressible fluid. Arch. Ration. Mech. Anal. 167(4), 281–308 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Fujita, N. Sauer, On existence of weak solutions of the Navier-Stokes equations in regions with moving boundaries. J. Fac. Sci. Univ. Tokyo Sect. I 17, 403–420 (1970)

    MathSciNet  MATH  Google Scholar 

  23. G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems, Springer Monographs in Mathematics, 2nd edn. (Springer, New York, 2011)

    Google Scholar 

  24. G.P. Galdi, A.L. Silvestre, Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques, in Nonlinear Problems in Mathematical Physics and Related Topics, I. International Mathematical Series (N. Y.), vol. 1 (Kluwer/Plenum, New York, 2002), pp. 121–144

    Google Scholar 

  25. M. Geissert, K. Götze, M. Hieber, L p-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids. Trans. Am. Math. Soc. 365(3), 1393–1439 (2013)

    Article  MATH  Google Scholar 

  26. D. Gérard-Varet, M. Hillairet, Regularity issues in the problem of fluid structure interaction. Arch. Ration. Mech. Anal. 195(2), 375–407 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Gérard-Varet, M. Hillairet, Computation of the drag force on a sphere close to a wall: the roughness issue. ESAIM Math. Model. Numer. Anal. 46(5), 1201–1224 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. D. Gérard-Varet, M. Hillairet, Existence of weak solutions up to collision for viscous fluid-solid systems with slip. http://hal.archives-ouvertes.fr/hal-00713331 (2012)

  29. D. Gérard-Varet, M. Hillairet, C. Wang, Influence of boundary conditions on the contact problem in a 3d incompressible flow. http://hal.archives-ouvertes.fr/hal-00795366 (2013)

  30. O. Glass, F. Sueur, Uniqueness results for weak solutions of two-dimensional fluid-solid systems (March 2012). arXiv:1203.2894v1

    Google Scholar 

  31. T. Goudon, P.-E. Jabin, A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. I. Light particles regime. Indiana Univ. Math. J. 53(6), 1495–1515 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. T. Goudon, P.-E. Jabin, A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. II. Fine particles regime. Indiana Univ. Math. J. 53(6), 1517–1536 (2004)

    Article  MathSciNet  Google Scholar 

  33. C. Grandmont, Y. Maday, Existence de solutions d’un problème de couplage fluide-structure bidimensionnel instationnarie. C. R. Acad. Sci. Paris Sér. I Math. 326(4), 525–530 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. C. Grandmont, Y. Maday, Existence for an unsteady fluid-structure interaction problem. M2AN Math. Model. Numer. Anal. 34(3), 609–636 (2000)

    Google Scholar 

  35. M.D. Gunzburger, H.-C. Lee, G.A. Seregin, Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions. J. Math. Fluid Mech. 2(3), 219–266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. V. Gyrya, K. Lipnikov, I.S. Aranson, L. Berlyand, Effective shear viscosity and dynamics of suspensions of micro-swimmers from small to moderate concentrations. J. Math. Biol. 62(5), 707–740 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. T.I. Hesla, Collisions of smooth bodies in viscous fluids: a mathematical investigation. Ph.D. thesis, University of Minnesota, revised version, October 2005

    Google Scholar 

  38. M. Hillairet, Lack of collision between solid bodies in a 2D incompressible viscous flow. Commun. Partial Differ. Equ. 32(7–9), 1345–1371 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Hillairet, T. Takahashi, Collisions in three-dimensional fluid structure interaction problems. SIAM J. Math. Anal. 40(6), 2451–2477 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. M. Hillairet, T. Takahashi, Blow up and grazing collision in viscous fluid solid interaction systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(1), 291–313 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Hillairet, A. Lozinski, M. Szopos, Simulation of particulate flow governed by lubrication forces and far-field hydrodynamic interactions. Discrete Continuous Dyn. Syst. Ser. B 11, 935–956 (2011)

    Article  MathSciNet  Google Scholar 

  42. L. Hocking, The effect of slip on the motion of a sphere close to a wall and of two adjacent spheres. J. Eng. Mech. 7, 207–221 (1973)

    MATH  Google Scholar 

  43. K.-H. Hoffmann, V. Starovoitov, On a motion of a solid body in a viscous fluid. Two-dimensional case. Adv. Math. Sci. Appl. 9(2), 633–648 (1999)

    MathSciNet  MATH  Google Scholar 

  44. K.-H. Hoffmann, V. Starovoitov, Zur Bewegung einer Kugel in einer zähen Flüssigkeit. Doc. Math. 5, 15–21 (2000)

    MathSciNet  MATH  Google Scholar 

  45. J.-G. Houot, J. San Martin, M. Tucsnak, Existence of solutions for the equations modeling the motion of rigid bodies in an ideal fluid. J. Funct. Anal. 259(11), 2856–2885 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. G. Joseph, Collisional dynamics of macroscopic particles in a viscous fluid. Ph.D. thesis, California Institute of Technology, Pasadena, May 2003

    Google Scholar 

  47. N.V. Judakov, The solvability of the problem of the motion of a rigid body in a viscous incompressible fluid. Dinamika Splošn. Sredy (Vyp. 18 Dinamika Zidkost. so Svobod. Granicami) 255, 249–253 (1974)

    Google Scholar 

  48. H. Kytömaa, P. Schmid, On the collision of rigid spheres in a weakly compressible fluid. Phys. Fluids A 4, 2683–2689 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  49. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires (Dunod, Paris, 1969)

    MATH  Google Scholar 

  50. M.E. O’Neill, K. Stewartson, On the slow motion of a sphere parallel to a nearby plane wall. J. Fluid Mech. 27, 705–724 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  51. J. San Martín, V. Starovoitov, M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161(2), 113–147 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  52. D. Serre, Chute libre d’un solide dans un fluide visqueux incompressible. Existence. Jpn. J. Appl. Math. 4(1), 99–110 (1987)

    Article  MATH  Google Scholar 

  53. J. Simon, Compact sets in the space L p(0, T; B). Ann. Mat. Pura Appl. (4) 146, 65–96 (1987)

    Google Scholar 

  54. V. Starovoitov, Behavior of a rigid body in an incompressible viscous fluid near a boundary, in Free Boundary Problems (Trento, 2002). International Series of Numerical Mathematics, vol. 147 (Birkhäuser, Basel, 2004), pp. 313–327

    Google Scholar 

  55. V. Starovoı̇tov, Nonuniqueness of a solution to the problem on motion of a rigid body in a viscous incompressible fluid. J. Math. Sci. 130(4), 4893–4898 (2005)

    Google Scholar 

  56. T. Takahashi, Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differ. Equ. 8(12), 1499–1532 (2003)

    MATH  Google Scholar 

  57. T. Takahashi, Existence of strong solutions for the problem of a rigid-fluid system. C. R. Math. Acad. Sci. Paris 336(5), 453–458 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  58. T. Takahashi, M. Tucsnak, Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid. J. Math. Fluid Mech. 6(1), 53–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  59. R. Temam, Problèmes mathématiques en plasticité, volume 12 of Méthodes Mathématiques de l’Informatique [Mathematical Methods of Information Science] (Gauthier-Villars/Montrouge, Paris, 1983)

    Google Scholar 

  60. J. Vázquez, E. Zuazua, Large time behavior for a simplified 1D model of fluid-solid interaction. Commun. Partial Differ. Equ. 28(9–10), 1705–1738 (2003)

    Article  MATH  Google Scholar 

  61. J.L. Vázquez, E. Zuazua, Lack of collision in a simplified 1D model for fluid-solid interaction. Math. Models Methods Appl. Sci. 16(5), 637–678 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  62. O. Vinogradova, G. Yakubov, Surface roughness and hydrodynamic boundary conditions. Phys. Rev. E 73, 479–487 (1986)

    Google Scholar 

  63. C. Yu, Global weak solutions to the incompressible Navier–Stokes–Vlasov equations. J. Math. Pures Appl. (9) 100(2), 275–293 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Hillairet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this chapter

Cite this chapter

Hillairet, M. (2014). Topics in the Mathematical Theory of Interactions of Incompressible Viscous Fluid with Rigid Bodies. In: Bodnár, T., Galdi, G., Nečasová, Š. (eds) Fluid-Structure Interaction and Biomedical Applications. Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0822-4_4

Download citation

Publish with us

Policies and ethics