Skip to main content

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 236))

Abstract

The paper concerns frame multipliers when one of the involved sequences is a Riesz basis. We determine the cases when the multiplier is well defined and invertible, well defined and not invertible, respectively not well defined.

Mathematics Subject Classification (2010). Primary 42C15; Secondary 47A05.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Balazs, Basic definition and properties of Bessel multipliers. J. Math. Anal. Appl. 325(1) (2007), 571–585,

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Balazs, J.-P. Antoine, A. Grybos, Weighted and controlled frames: Mutual relationship and first numerical properties. Int. J. Wavelets Multiresolut. Inf. Process. 8(1) (2010), 109–132.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Balazs, B. Laback, G .Eckel,W.A. Deutsch, Time-frequency sparsity by removing perceptually irrelevant components using a simple model of simultaneous masking. IEEE Trans. Speech Audio Process. 18(1) (2010), 34–49.

    Article  Google Scholar 

  4. P. Balazs, D. T. Stoeva, J.-P. Antoine, Classification of General Sequences Frame- Related Operators. Sampl. Theory Signal Image Process. 10(1-2) (2011), 151–170.

    MathSciNet  MATH  Google Scholar 

  5. J. Benedetto, G . Pfander, Frame expansions for Gabor multipliers. Appl. Comput. Harmon. Anal. 20(1) (2006), 26–40.

    Article  MathSciNet  MATH  Google Scholar 

  6. O. Christensen, An Introduction to Frames and RieszBases . Birkhäuser, 2003.

    Google Scholar 

  7. P. Depalle, R. Kronland-Martinet, B. Torrésani, Time-frequency multipliers for sound synthesis. In: Proceedings of the Wavelet XII conference, SPIE annual Symposium, San Diego, 2007.

    Google Scholar 

  8. H.G . Feichtinger, K. Nowak, A first survey of Gabor multipliers. Birkhäuser, Boston, 2003, Ch. 5, pp. 99–128.

    Google Scholar 

  9. H.G. Feichtinger, G. Narimani, Fourier multipliers of classical modulation spaces, Appl. Comput. Harmon. Anal. 21(3) (2006) 349–359.

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Heil, A Basis Theory Primer. Birkhäuser, Boston, 2011.

    Google Scholar 

  11. G. Matz and F. Hlawatsch, Linear Time-Frequency Filters: On-line Algorithms and Applications. Eds. A. Papandreou-Suppappola, Boca Raton (FL): CRC Press, 2002, Ch. 6 in “Application in Time-Frequency Signal Processing”, pp. 205–271.

    Google Scholar 

  12. D.T. Stoeva and P. Balazs. Weighted frames and frame multipliers. Annual of the University of Architecture, Civil Engineering and Geodesy, Vol. XLIII-XLIV 2004- 2009 (Fasc. II) (2012), pp. 33–42.

    Google Scholar 

  13. D.T. Stoeva and P. Balazs. Invertibility of Multipliers. Appl. Comput. Harmon. Anal. 33(2) (2012), 292–299.

    Article  MathSciNet  MATH  Google Scholar 

  14. D.T. Stoeva and P. Balazs, Canonical forms of unconditionally convergent multipliers. J. Math. Anal. Appl. 399(1) (2013), 252–259.

    Article  MathSciNet  MATH  Google Scholar 

  15. D.T. Stoeva and P. Balazs, Detailed characterization of unconditional convergence and invertibility of multipliers. Sampl. Theory Signal Image Process. 12(2) (2013), to appear.

    Google Scholar 

  16. D.T. Stoeva and P. Balazs, Representation of the inverse of a multiplier as a multiplier. arXiv:1108.6286, 2011.

    Google Scholar 

  17. R.M. Young, An Introduction to Nonharmonic Fourier Series. Academic Press, New York and London, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana T. Stoeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this paper

Cite this paper

Stoeva, D.T., Balazs, P. (2014). Riesz Bases Multipliers. In: Cepedello Boiso, M., Hedenmalm, H., Kaashoek, M., Montes Rodríguez, A., Treil, S. (eds) Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation. Operator Theory: Advances and Applications, vol 236. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0648-0_30

Download citation

Publish with us

Policies and ethics