Skip to main content

Structure of Variable Lebesgue Spaces

  • Chapter
  • First Online:
Variable Lebesgue Spaces

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

In this chapter we give a precise definition of the variable Lebesgue spaces and establish their structural properties as Banach function spaces. Throughout this chapter we will generally assume that \(\Omega \) is a Lebesgue measurable subset of \({\mathbb{R}}^{n}\) with positive measure. Occasionally we will have to assume more, but we make it explicit if we do.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. C. Bennett and R. Sharpley. Interpolation of Operators, volume 129 of Pure and Applied Mathematics. Academic Press Inc., Boston, MA, 1988.

    MATH  Google Scholar 

  2. H. Brezis. Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maî trise. [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris, 1983. Théorie et applications. [Theory and applications].

    Google Scholar 

  3. J. B. Conway. A Course in Functional Analysis, volume 96 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1990.

    MATH  Google Scholar 

  4. D. Cruz-Uribe, L. Diening, and A. Fiorenza. A new proof of the boundedness of maximal operators on variable Lebesgue spaces. Boll. Unione Mat. Ital. (9), 2(1):151–173, 2009.

    Google Scholar 

  5. D. Cruz-Uribe and A. Fiorenza. Approximate identities in variable L p spaces. Math. Nachr., 280(3):256–270, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Cruz-Uribe and A. Fiorenza. LlogL results for the maximal operator in variable L p spaces. Trans. Amer. Math. Soc., 361(5):2631–2647, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Cruz-Uribe and A. Fiorenza. Convergence in variable Lebesgue spaces. Publ. Mat., 54(2):441–459, 2010.

    MathSciNet  MATH  Google Scholar 

  8. D. Cruz-Uribe, A. Fiorenza, J. M. Martell, and C. Pérez. The boundedness of classical operators on variable L p spaces. Ann. Acad. Sci. Fenn. Math., 31(1):239–264, 2006.

    MathSciNet  Google Scholar 

  9. D. Cruz-Uribe, A. Fiorenza, and C. J. Neugebauer. The maximal function on variable L p spaces. Ann. Acad. Sci. Fenn. Math., 28(1):223–238, 2003. See also errata [63].

    Google Scholar 

  10. D. Cruz-Uribe, J. M. Martell, and C. Pérez. Sharp two-weight inequalities for singular integrals, with applications to the Hilbert transform and the Sarason conjecture. Adv. Math., 216(2):647–676, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  11. V. De Cicco, C. Leone, and A. Verde. Lower semicontinuity in SBV for integrals with variable growth. SIAM J. Math. Anal., 42(6):3112–3128, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Diening. Maximal function on generalized Lebesgue spaces L p(⋅). Math. Inequal. Appl., 7(2):245–253, 2004.

    MathSciNet  MATH  Google Scholar 

  13. L. Diening. Lebesgue and Sobolev Spaces with Variable Exponent. Habilitation, Universität Freiburg, 2007.

    Google Scholar 

  14. L. Diening, P. Harjulehto, P. Hästö, Y. Mizuta, and T. Shimomura. Maximal functions in variable exponent spaces: limiting cases of the exponent. Ann. Acad. Sci. Fenn. Math., 34(2):503–522, 2009.

    MathSciNet  MATH  Google Scholar 

  15. L. Diening, P. Harjulehto, P. Hästö, and M. R˚užička. Lebesgue and Sobolev spaces with Variable Exponents, volume 2017 of Lecture Notes in Mathematics. Springer, Heidelberg, 2011.

    Google Scholar 

  16. L. Diening and S. Samko. Hardy inequality in variable exponent Lebesgue spaces. Fract. Calc. Appl. Anal., 10(1):1–18, 2007.

    MathSciNet  MATH  Google Scholar 

  17. G. Dinca and P. Matei. Geometry of Sobolev spaces with variable exponent and a generalization of the p-Laplacian. Anal. Appl. (Singap.), 7(4):373–390, 2009.

    Google Scholar 

  18. G. Dinca and P. Matei. Geometry of Sobolev spaces with variable exponent: smoothness and uniform convexity. C. R. Math. Acad. Sci. Paris, 347(15–16):885–889, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  19. N. Dunford and J. T. Schwartz. Linear Operators. Part I. Wiley Classics Library. John Wiley & Sons Inc., New York, 1988. General theory, With the assistance of William G. Bade and R. G. Bartle, Reprint of the 1958 original, A Wiley-Interscience Publication.

    Google Scholar 

  20. D. E. Edmunds, J. Lang, and A. Nekvinda. On L p(x) norms. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455(1981):219–225, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. E. Edmunds, J. Lang, and A. Nekvinda. Some s-numbers of an integral operator of Hardy type on L p(⋅) spaces. J. Funct. Anal., 257(1):219–242, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  22. D. E. Edmunds and A. Nekvinda. Averaging operators on \({l}^{\{p_{n}\}}\) and L p(x). Math. Inequal. Appl., 5(2):235–246, 2002.

    MathSciNet  MATH  Google Scholar 

  23. D. E. Edmunds and J. Rákosník. Sobolev embeddings with variable exponent. Studia Math., 143(3):267–293, 2000.

    MathSciNet  MATH  Google Scholar 

  24. X. Fan. Amemiya norm equals Orlicz norm in Musielak-Orlicz spaces. Acta Math. Sin. (Engl. Ser.), 23(2):281–288, 2007.

    Google Scholar 

  25. X. Fan and D. Zhao. On the spaces \({L}^{p(x)}(\Omega )\) and \({W}^{m,p(x)}(\Omega )\). J. Math. Anal. Appl., 263(2):424–446, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Fiorenza and J. M. Rakotoson. Relative rearrangement and lebesgue spaces L p(⋅) with variable exponent. J. Math. Pures Appl. (9), 88(6):506–521, 2007.

    Google Scholar 

  27. T. Futamura and Y. Mizuta. Maximal functions for Lebesgue spaces with variable exponent approaching 1. Hiroshima Math. J., 36(1):23–28, 2006.

    MathSciNet  MATH  Google Scholar 

  28. T. Futamura, Y. Mizuta, and T. Shimomura. Integrability of maximal functions and Riesz potentials in Orlicz spaces of variable exponent. J. Math. Anal. Appl., 366(2):391–417, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  29. L. Grafakos. Classical Fourier Analysis, volume 249 of Graduate Texts in Mathematics. Springer, New York, 2nd edition, 2008.

    MATH  Google Scholar 

  30. L. Greco, T. Iwaniec, and G. Moscariello. Limits of the improved integrability of the volume forms. Indiana Univ. Math. J., 44(2):305–339, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  31. P. Hajłasz and J. Onninen. On boundedness of maximal functions in Sobolev spaces. Ann. Acad. Sci. Fenn. Math., 29(1):167–176, 2004.

    MathSciNet  MATH  Google Scholar 

  32. P. Harjulehto. Variable exponent Sobolev spaces with zero boundary values. Math. Bohem., 132(2):125–136, 2007.

    MathSciNet  MATH  Google Scholar 

  33. P. Harjulehto and P. Hästö. An overview of variable exponent Lebesgue and Sobolev spaces. In Future trends in geometric function theory, volume 92 of Rep. Univ. Jyväskylä Dep. Math. Stat., pages 85–93. Univ. Jyväskylä, Jyväskylä, 2003.

    Google Scholar 

  34. P. Harjulehto and P. Hästö. Lebesgue points in variable exponent spaces. Ann. Acad. Sci. Fenn. Math., 29(2):295–306, 2004.

    MathSciNet  MATH  Google Scholar 

  35. P. Harjulehto and P. Hästö. Sobolev inequalities with variable exponent attaining the values 1 and n. Publ. Mat., 52(2):347–363, 2008.

    Google Scholar 

  36. P. Hästö. The maximal operator in Lebesgue spaces with variable exponent near 1. Math. Nachr., 280(1–2):74–82, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  37. P. Hästö. Local-to-global results in variable exponent spaces. Math. Res. Letters, 16(2):263–278, 2009.

    MATH  Google Scholar 

  38. P Hästö, Y Mizuta, T Ohno, and T Shimomura. Sobolev inequalities for Orlicz spaces of two variable exponents. Glasgow Math. J., pages 1–14, 2009.

    Google Scholar 

  39. P. Hästö, Y. Mizuta, T. Ohno, and T. Shimomura. Sobolev inequalities for Orlicz spaces of two variable exponents. Glasg. Math. J., 52(2):227–240, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  40. E. Hewitt and K. Stromberg. Real and Abstract Analysis. Springer-Verlag, New York, 1975. A modern treatment of the theory of functions of a real variable, Third printing, Graduate Texts in Mathematics, No. 25.

    Google Scholar 

  41. H. Hudzik. On continuity of the imbedding operation from \(W_{M_{1}}^{k}(\Omega )\) into \(W_{M_{2}}^{k}(\Omega )\). Funct. Approx. Comment. Math., 6:111–118, 1978.

    MathSciNet  MATH  Google Scholar 

  42. H. Hudzik. The problems of separability, duality, reflexivity and of comparison for generalized Orlicz-Sobolev spaces \({W}^{k})_{M}(\Omega )\). Comment. Math. Prace Mat., 21(2):315–324, 1980.

    MathSciNet  Google Scholar 

  43. H. Hudzik and L. Maligranda. Amemiya norm equals Orlicz norm in general. Indag. Math. (N.S.), 11(4):573–585, 2000.

    Google Scholar 

  44. J. Ishii. On equivalence of modular function spaces. Proc. Japan Acad., 35:551–556, 1959.

    Article  MathSciNet  MATH  Google Scholar 

  45. G. A. Kalyabin. A nondensity criterion for \({L}^{\infty }({\mathbb{R}}^{n})\) in \({L}^{p(\cdot )}({\mathbb{R}}^{n})\). Mat. Zametki, 82(2):315–316, 2007.

    Article  MathSciNet  Google Scholar 

  46. N. K. Karapetyants and A. I. Ginzburg. Fractional integrals and singular integrals in the Hölder classes of variable order. Integral Transform. Spec. Funct., 2(2):91–106, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  47. N. K. Karapetyants and A. I. Ginzburg. Fractional integrodifferentiation in Hölder classes of arbitrary order. Georgian Math. J., 2(2):141–150, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  48. A. N. Kolmogorov. Zur Normierbarkeit eines allgemeinen topologischen linearen Räumes. Studia Math., 5:29–33, 1934.

    MATH  Google Scholar 

  49. O. Kováčik and J. Rákosník. On spaces L p(x) and W k, p(x). Czechoslovak Math. J., 41(116)(4):592–618, 1991.

    Google Scholar 

  50. A. Kozek. Convex integral functionals on Orlicz spaces. Comment. Math. Prace Mat., 21(1):109–135, 1980.

    MathSciNet  Google Scholar 

  51. E. H. Lieb and M. Loss. Analysis, volume 14 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2001.

    MATH  Google Scholar 

  52. J. Lukeš, L. Pick, and D. Pokorný. On geometric properties of the spaces L p(x). Rev. Mat. Complut., 24(1):115–130, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  53. F.-Y. Maeda, Y. Mizuta, and T. Ohno. Approximate identities and Young type inequalities in variable Lebesgue-Orlicz spaces \({L}^{p(\cdot )}{(\log L)}^{q(\cdot )}\). Ann. Acad. Sci. Fenn. Math., 35:405–420, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  54. L. Maligranda. Orlicz spaces and interpolation, volume 5 of Seminários de Matemática [Seminars in Mathematics]. Universidade Estadual de Campinas, Departamento de Matemática, Campinas, 1989.

    Google Scholar 

  55. L. Maligranda. Hidegoro Nakano (1909–1974) – on the centenary of his birth. In M. Kato, L. Maligranda, and T. Suzuki, editors, Banach and Function Spaces III: Proceedings of the International Symposium on Banach and Function Spaces 2009, pages 99–171. Yokohama Publishers, 2011.

    Google Scholar 

  56. C. Miranda. Istituzioni di Analisi Funzionale Lineare, volume I. Unione Matematica Italiana, Pitagora Editrice, Bologna, 1978.

    MATH  Google Scholar 

  57. Y. Mizuta, E. Nakai, T. Ohno, and T. Shimomura. Hardy’s inequality in Orlicz-Sobolev spaces of variable exponent. Hokkaido Math. J., 40(2):187–203, 2011.

    MathSciNet  MATH  Google Scholar 

  58. Y. Mizuta, T. Ohno, and T. Shimomura. Integrability of maximal functions for generalized Lebesgue spaces with variable exponent. Math. Nachr., 281(3):386–395, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  59. Y. Mizuta, T. Ohno, and T. Shimomura. Sobolev’s inequalities and vanishing integrability for Riesz potentials of functions in the generalized Lebesgue space \({L}^{p(\cdot )}{(\log L)}^{q(\cdot )}\). J. Math. Anal. Appl., 345(1):70–85, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  60. J. Musielak. Orlicz Spaces and Modular Spaces, volume 1034 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1983.

    MATH  Google Scholar 

  61. J. Musielak and W. Orlicz. On modular spaces. Studia Math., 18:49–65, 1959.

    MathSciNet  MATH  Google Scholar 

  62. H. Nakano. Modulared sequence spaces. Proc. Japan Acad., 27:508–512, 1951.

    Article  MathSciNet  MATH  Google Scholar 

  63. H. Nakano. Topology and Linear Topological Spaces. Maruzen Co. Ltd., Tokyo, 1951.

    Google Scholar 

  64. A. Nekvinda. Equivalence of \({l}^{\{p_{n}\}}\) norms and shift operators. Math. Inequal. Appl., 5(4):711–723, 2002.

    MathSciNet  MATH  Google Scholar 

  65. A. Nekvinda. A note on maximal operator on \({\ell}^{\{p_{n}\}}\) and \({L}^{p(x)}(\mathbb{R})\). J. Funct. Spaces Appl., 5(1):49–88, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  66. W. Orlicz. Über konjugierte Exponentenfolgen. Stud. Math., 3:200–211, 1931.

    Google Scholar 

  67. B. Ross and S. Samko. Fractional integration operator of variable order in the Hölder spaces H λ(x). Internat. J. Math. Math. Sci., 18(4):777–788, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  68. H. L. Royden. Real Analysis. Macmillan Publishing Company, New York, third edition, 1988.

    MATH  Google Scholar 

  69. S. Samko. Convolution type operators in L p(x). Integral Transform. Spec. Funct., 7(1–2):123–144, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  70. S. Samko. Differentiation and integration of variable order and the spaces L p(x). In Operator theory for complex and hypercomplex analysis (Mexico City, 1994), volume 212 of Contemp. Math., pages 203–219. Amer. Math. Soc., Providence, RI, 1998.

    Google Scholar 

  71. I. I. Sharapudinov. The topology of the space \({\mathcal{L}}^{p(t)}([0,\,1])\). Mat. Zametki, 26(4):613–632, 655, 1979.

    Google Scholar 

  72. I. I. Sharapudinov. The basis property of the Haar system in the space \({\mathcal{L}}^{p(t)}([0,1])\) and the principle of localization in the mean. Mat. Sb. (N.S.), 130(172)(2):275–283, 286, 1986.

    Google Scholar 

  73. I. V. Šragin. The Amemiya norm in an Orlicz-Nakano space. Kišinev. Gos. Univ. Učen. Zap., 91:91–102, 1967.

    Google Scholar 

  74. E. M. Stein. Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970.

    Google Scholar 

  75. G. Zecca. The boundedness of the maximal operator on variable Sobolev spaces. Rend. Acc. Sc. fis. mat Napoli, LXXV:31–43, 2008.

    Google Scholar 

  76. V. V. Zhikov. On the homogenization of nonlinear variational problems in perforated domains. Russian J. Math. Phys., 2(3):393–408, 1994.

    MathSciNet  MATH  Google Scholar 

  77. V. V. Zhikov. On Lavrentiev’s phenomenon. Russian J. Math. Phys., 3(2):249–269, 1995.

    MathSciNet  MATH  Google Scholar 

  78. V. V. Zhikov. On some variational problems. Russian J. Math. Phys., 5(1):105–116 (1998), 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this chapter

Cite this chapter

Cruz-Uribe, D.V., Fiorenza, A. (2013). Structure of Variable Lebesgue Spaces. In: Variable Lebesgue Spaces. Applied and Numerical Harmonic Analysis. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0548-3_2

Download citation

Publish with us

Policies and ethics