Skip to main content

Antimicrobial Peptides Produced by Microorganisms

  • Chapter
  • First Online:
Antimicrobial Peptides and Innate Immunity

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Antimicrobial peptides comprise a diverse group of ribosomally synthesized molecules that include plant thionins and defensins, insect defensins and cecropins, amphibian magainins and temporins, defensins and cathelicidins from higher vertebrates, as well as fungal defensins, cyanobactins, and bacteriocins. The latter are produced by species of bacteria and certain strains of the Archaea domain, being active in small concentrations, and exhibiting bactericidal or bacteriostatic activity against both human and veterinary pathogens. Nisin is the most well-known bacteriocin and the only one approved for use as food preservative; its mechanism of action is based on the interaction with lipid II, a key molecule in the bacterial cell wall synthesis. Although bacteriocins are traditionally used in the food industry, they show several desired features to biotechnological applications, and they could be used in combined therapy or as substitutes of conventional antibiotics in the control of bacterial infections. Although less documented when compared to antibiotics, the issue of resistance among previously sensitive bacterial strains has to be considered for antimicrobial peptides produced by microorganisms. In this chapter, we discuss some relevant concerns regarding the antimicrobial peptides produced by microorganisms, giving special emphasis to the bacteriocins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aertsen A, Michiels CW (2005) Mrr instigates the SOS response after high pressure stress in Escherichia coli. Mol Microbiol 58:1381–1391

    Article  PubMed  CAS  Google Scholar 

  • Alifax R, Chevalier R (1962) Study of the nisinase produced by Streptococcus thermophilus. J Dairy Res 29:233–240

    CAS  Google Scholar 

  • Andes D, Craig W, Nielsen LA, Kristensen HH (2009) In vivo pharmacodynamic characterization of a novel plectasin antibiotic, NZ2114, in a murine infection model. Antimicrob Agents Chemother 53(7):3003–3009

    Article  PubMed  CAS  Google Scholar 

  • Andrade AC, van Nistelrooy JGM, Peery RB, Skatrud PL, de Waard MA (2000) The role of ABC transporters from Aspergillus nidulans in protection against cytotoxic agents and in antibiotic production. Mol Gen Genet 263(6):966–977

    Article  PubMed  CAS  Google Scholar 

  • Atrih A, Rekhif N, Moir AJG, Lebrihi A, Lefebvre G (2001) Mode of action, purification and amino acid sequence of plantaricin C19, an anti-Listeria bacteriocin produced by Lactobacillus plantarum C19. Int J Food Microbiol 68:93–109

    Article  PubMed  CAS  Google Scholar 

  • Balakrishnan M, Simmonds RS, Kilian M, Tagg JR (2002) Different bacteriocin activities of Streptococcus mutans reflect distinct phylogenetic lineages. J Med Microbiol 51:941–948

    PubMed  CAS  Google Scholar 

  • Bals R (2000) Epithelial antimicrobial peptides in host defense against infection. Respir Res 1:141–150

    Article  PubMed  CAS  Google Scholar 

  • Banemann A, Deppisch H, Gross R (1998) The lipopolysaccharide of Bordetella bronchiseptica acts as a protective shield against antimicrobial peptides. Infect Immun 66:5607–5612

    PubMed  CAS  Google Scholar 

  • Bansal PS, Torres AM, Crossett B, Wong KK, Koh JM, Geraghty DP, Vandenberg JI, Kuchel PW (2008) Substrate specificity of platypus venom L-to-D-peptide isomerase. J Biol Chem 283:8969–8975

    Article  PubMed  CAS  Google Scholar 

  • Bedford M (2000) Removal of antibiotic growth promoters from poultry diets: implications and strategies to minimize subsequent problems. World’s Poult Sci J 56:347–365

    Article  Google Scholar 

  • Bengoechea JA, Skurnik M (2000) Temperature-regulated efflux pump/potassium antiporter system mediates resistance to cationic antimicrobial peptides in Yersinia. Mol Microbiol 37:67–80

    Article  PubMed  CAS  Google Scholar 

  • Bernbom N, Licht TR, Brogren CH, Jelle B, Johansen AH, Badiola I, Vogensen FK, Norrung B (2006) Effects of Lactococcus lactis on composition of intestinal microbiota: role of nisin. Appl Environ Microbiol 72:239–244

    Article  PubMed  CAS  Google Scholar 

  • Bierbaum G, Sahl HG (1985) Induction of autolysis of staphylococci by the basic peptide antibiotic pep5 and nisin and their influence on the activity of autolytic enzymes. Arch Microbiol 141:249–254

    Article  PubMed  CAS  Google Scholar 

  • Bokesch HR, O'Keefe BR, McKee TC, Pannell LK, Patterson GML, Gardellina RS, Sowder RC, Turpin J, Watson K, Buckheit RW Jr, Boyd MR (2003) A potent novel anti-HIV protein from the cultured cyanobacterium Scytonema varium. Biochemistry 42:2578–2584

    Article  PubMed  CAS  Google Scholar 

  • Boziaris IS, Humpheso L, Adams MR (1998) Effect of nisin on heat injury and inactivation of Salmonella enteritidis PT4. Int J Food Microbiol 43:7–13

    Article  PubMed  CAS  Google Scholar 

  • Branen JK, Davidson PM (2004) Enhancement of nisin, lysozyme, and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lactoferrin. Int J Food Microbiol 90:63–74

    Article  PubMed  CAS  Google Scholar 

  • Breukink E, de Kruijff B (2006) Lipid II as a target for antibiotics. Nat Rev Drug Discov 5:321–323

    Article  PubMed  CAS  Google Scholar 

  • Breukink E, Wiedemann I, van Kraaij C, Kuipers OP, Sahl HG, de Kruijff B (1999) Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286:2361–2364

    Article  PubMed  CAS  Google Scholar 

  • Brinch KS, Sandberg A, Baudoux P, van Bambeke F, Tulkens PM, Frimodt-Möller N, Hoiby N, Kristensen HH (2009) Plectasin shows intracellular activity against Staphylococcus aureus in human THP-1 monocytes and in a mouse peritonitis model. Antimicrob Agents Chemother 53(11):4801–4808

    Article  PubMed  CAS  Google Scholar 

  • Brogden KA, Ackermann M, McCray PB Jr, Tack BF (2003) Antimicrobial peptides in animals and their role in host defences. Int J Antimicrob Agents 22:465–478

    Article  PubMed  CAS  Google Scholar 

  • Brötz H, Josten M, Wiedemann I, Schneider U, Götz F, Bierbaum G (1998) Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol Microbiol 30:317–327

    Article  PubMed  Google Scholar 

  • Burja AM, Bagnais B, Abou-Mansour E, Burgess JG, Wright PC (2001) Marine cyanobacteria – a prolific source of natural products. Tetrahedron 57:9347–9377

    Article  CAS  Google Scholar 

  • Burkard M, Entian KD, Stein T (2007) Development and application of a microtiter plate-based autoinduction bioassay for detection of the lantibiotic subtilin. J Microbiol Methods 70:179–185

    Article  PubMed  CAS  Google Scholar 

  • Butala M, Podlesek Z, Zgur-Bertok D (2008) The SOS response affects thermoregulation of colicin K synthesis. FEMS Microbiol Lett 283:104–111

    Article  PubMed  CAS  Google Scholar 

  • Callaway TR, Melo AMSC, Russell JB (1997) The effect of nisin and monensin on ruminal fermentation in vitro. Curr Microbiol 35:90–96

    Article  PubMed  CAS  Google Scholar 

  • Cao Z, Klebba PE (2002) Mechanisms of colicin binding and transport through outer membrane porins. Biochimie 84(5–6):399–412

    Article  PubMed  CAS  Google Scholar 

  • Carlson SA, Frana TS, Griffith RW (2001) Antibiotic resistance in Salmonella enterica serovar Typhimurium exposed to microcin-producing Escherichia coli. Appl Environ Microbiol 67:3763–3766

    Article  PubMed  CAS  Google Scholar 

  • Carroll J, Draper LA, O’Connor PM, Coffey A, Hill C, Ross RP, Cotter PD, O’Mahony J (2010) Comparison of the activities of the lantibiotics nisin and lacticin 3147 against clinically significant mycobacteria. Int J Antimicrob Agents 36:132–136

    Article  PubMed  CAS  Google Scholar 

  • Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, Cavard D (2007) Colicin biology. Microbiol Mol Biol Rev 71(1):158–229

    Article  PubMed  CAS  Google Scholar 

  • Chaung DH, Kyeremeh AG, Gunji Y, Takahara Y, Ehara Y, Kikumoto T (1999) Identification and cloning of an Eewinia carotovora subsp. carotovora bacteriocin regulator gene by insertional mutagenesis. J Bacteriol 181(6):1953–1957

    Google Scholar 

  • Cheikhyoussef A, Pogori N, Chen H, Tian F, Chen W, Tang J, Zhang H (2009) Antimicrobial activity and partial characterization of bacteriocin-like inhibitory substances (BLIS) produced by Bifidobacterium infantis BCRC 14602. Food Control 20:553–559

    Article  CAS  Google Scholar 

  • Chen H, Hoover DG (2003) Bacteriocins and their food applications. Compr Rev Food Sci Food Saf 2:82–100

    CAS  Google Scholar 

  • Chhibber S, Vadehra DV (1986) Purification and characterization of a bactoriocin from Klebsiella pneumoniae 158. J Gen Microbiol 132:1051–1054

    PubMed  CAS  Google Scholar 

  • Cirioni O, Slvestri C, Ghiselli R, Giacometti A, Orlando F, Mocchegiani F, Chiodi L, Vittoria AD, Saba V, Scalise G (2006) Experimental study on the efficacy of combination of α-helical antimicrobial peptides and vancomycin against Staphylococcus aureus with intermediate resistance to glycopeptides. Peptides 27:2600–2606

    Article  PubMed  CAS  Google Scholar 

  • Claypool L, Hainemann B, Voris L, Stumbo CR (1966) Residence time of nisin in the oral cavity following consumption of chocolate milk containing nisin. J Dairy Sci 49:314–316

    Article  PubMed  CAS  Google Scholar 

  • Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20

    Article  PubMed  CAS  Google Scholar 

  • Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788

    Article  PubMed  CAS  Google Scholar 

  • Crandall AD, Montville TJ (1998) Nisin resistance in Listeria monocytogenes ATCC 700302 is a complex phenotype. Appl Environ Microbiol 64:231–237

    PubMed  CAS  Google Scholar 

  • Crispie F, Twomey D, Flynn J, Hill C, Ross P, Meaney W (2005) The lantibiotic lacticin 3147 produced in a milk-based medium improves the efficacy of a bismuth-based teat seal in cattle deliberately infected with Staphylococcus aureus. J Dairy Res 72:159–167

    Article  PubMed  CAS  Google Scholar 

  • Cursino L, Smarda J, Chartone-Souza E, Nascimento AMA (2002) Recent updated aspects of colicins of enterobacteriaceae. Braz J Microbiol 33:185–195

    Article  CAS  Google Scholar 

  • Dalet K, Cenatiempo Y, Cossart P (2001) The European Listeria Genome Consortium; Héchard, Y. A σ54-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology 147:3263–3269

    PubMed  CAS  Google Scholar 

  • Davies JK, Reeves P (1975a) Genetics of resistance to colicins in Escherichia coli K-12: cross-resistance among colicins of group B. J Bacteriol 123:96–101

    PubMed  CAS  Google Scholar 

  • Davies JK, Reeves P (1975b) Genetics of resistance to colicins in Escherichia coli K-12: cross-resistance among colicins of group A. J Bacteriol 123:102–117

    PubMed  CAS  Google Scholar 

  • de Kwaadsteniet M, ten Doeschate K, Dicks LM (2008) Characterization of the structural gene encoding nisin F, a new lantibiotic produced by a Lactococcus lactis subsp. lactis isolate from freshwater catfish (Clarias gariepinus). Appl Environ Microbiol 74:547–549

    Article  PubMed  CAS  Google Scholar 

  • de Lorenzo V, Aguilar A (1984) Antibiotics from Gram-negative bacteria: do they play a role in microbial ecology? Trends Biochem Sci 9:266–269

    Article  Google Scholar 

  • de Vuyst L, Leroy F (2007) Bacteriocins from lactic acid bacteria: production, purification, and food applications. J Mol Microbiol Biotechnol 13:194–199

    Article  PubMed  CAS  Google Scholar 

  • del Castillo FJ, del Castillo I, Moreno F (2001) Construction and characterization of mutations at codon 751 of the Escherichia coli gyrB gene that confer resistance to the antimicrobial peptide microcin B17 and alter the activity of DNA gyrase. J Bacteriol 183(6):2137–2140

    Article  PubMed  Google Scholar 

  • Delves-Broughton J, Blackburn P, Evans RJ, Hugenholtz J (1996) Applications of the bacteriocin, nisin. Antonie van Leeuwenhoek 69(2):193–202

    Article  PubMed  CAS  Google Scholar 

  • Delves-Broughton J (2005) Nisin as a food preservative. Food Australia 57:525–527

    CAS  Google Scholar 

  • Diop MB, Dubois-Dauphin R, Destain J, Tine E, Thonart P (2009) Use of a nisin-producing starter culture of Lactococcus lactis subsp. lactis to improve traditional fish fermentation in Senegal. J Food Prot 72:1930–1934

    PubMed  Google Scholar 

  • Dobson AE, Sanozky-Dawes RB, Klaenhammer TR (2007) Identification of an operon and inducing peptide involved in the production of lactacin B by Lactobacillus acidophilus. J Appl Microbiol 103:1766–1778

    Article  PubMed  CAS  Google Scholar 

  • Donadio S, Monciardini P, Sosio M (2007) Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep 24:1073–1109

    Article  PubMed  CAS  Google Scholar 

  • Donia MS, Hathaway BJ, Sudek S, Haygood MG, Rosovitz MJ, Ravel J, Schmidt EW (2006) Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians. Nat Chem Biol 2:729–735

    Article  PubMed  CAS  Google Scholar 

  • Dorrer E, Teuber M (1977) Induction of polymyxin resistance in Pseudomonas fluorescens by phosphate limitation. Arch Microbiol 114:87–89

    Article  PubMed  CAS  Google Scholar 

  • Draper LA, Ross RP, Hill C, Cotter PD (2008) Lantibiotic immunity. Curr Protein Pept Sci 9:39–49

    Article  PubMed  CAS  Google Scholar 

  • Drider D, Fimland G, Héchard Y, McMullen LM, Prévost H (2006) The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70:564–582

    Article  PubMed  CAS  Google Scholar 

  • Drosinos EH, Mataragas M, Metaxopoulos J (2006) Modeling of growth and bacteriocin production by Leuconostoc mesenteroides E131. Meat Sci 74:690–696

    Article  PubMed  CAS  Google Scholar 

  • Dufour A, Hindré T, Haras D, Le Pennec JP (2007) The biology of lantibiotics from the lacticin 481group is coming of age. FEMS Microbiol Rev 31:134–167

    Article  PubMed  CAS  Google Scholar 

  • Dupuy B, Raffestin S, Matamouros S, Mani N, Popoff MR, Sonenshein AL (2006) Regulation of toxin and bacteriocin gene expression in Clostridium by interchangeable RNA polymerase sigma factors. Mol Microbiol 60(4):1044–1057

    Article  PubMed  CAS  Google Scholar 

  • Eijsink VG, Axelsson L, Diep DB, Harvarstein LS, Holo H, Nes IF (2002) Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie van Leeuwenhoek 81:639–654

    Article  PubMed  CAS  Google Scholar 

  • Eraso JM, Chidambaram M, Weinstock GM (1996) Increased production of colicin E1 in stationary phase. J Bacteriol 178(7):1928–1935

    PubMed  CAS  Google Scholar 

  • Eraso JM, Weinstock GM (1992) Anaerobic control of colicin E1 production. J Bacteriol 174:5101–5109

    PubMed  CAS  Google Scholar 

  • Ernst RK, Yi EC, Guo L, Lim KB, Burns JL, Hackett M, Miller SI (1999) Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science 286(5444):1561–1565

    Article  PubMed  CAS  Google Scholar 

  • Ernst RK, Guina T, Miller SI (2001) Salmonella typhimurium outer membrane remodeling: role in resistance to host innate immunity. Microbes Infect 3:1327–1334

    Article  PubMed  CAS  Google Scholar 

  • FDA (US Food and Drug Administration) (1988) Nisin preparation: affirmation of GRAS status as a direct human food ingredient. Fed Regist 53:11247–11251

    Google Scholar 

  • FDA (2001) US Food and Drug Administration, Department of Health and Human Services. Agency Response Letter GRAS Notice nº GRN000065. Available from http://www.accessdata.fda.gov/scripts/fcn/gras_notices/grn0065.pdf. Accessed 8 Sep 2010

  • Fernández de Palencia P, de la Plaza M, Mohedano ML, Martínez-Cuesta MC, Requena T, López P, Peláez C (2004) Enhancement of 2-methylbutanal formation in cheese by using a fluorescently tagged Lacticin 3147 producing Lactococcus lactis strain. Int J Food Microbiol 93:335–347

    Article  PubMed  CAS  Google Scholar 

  • Frey P, Smith JJ, Albar L, Prior P, Saddler GS, Trigalet-Demery D, Trigalet A (1996) Bacteriocin typing of Burkholderia (Pseudomonas) solanacearum race 1 of the french west indies and correlation with genomic variation of the pathogen. Appl Environ Microbiol 62(2):473–479

    PubMed  CAS  Google Scholar 

  • Friedrich C, Scott MG, Karunaratne N, Yan H, Hancock RE (1999) Salt-resistant alpha-helical cationic antimicrobial peptides. Antimicrob Agents Chemother 43:1542–1548

    PubMed  CAS  Google Scholar 

  • Gálvez A, Abriouel H, López RL, Ben Omar N (2007) Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120:51–70

    Article  PubMed  CAS  Google Scholar 

  • Gálvez A, López RL, Abriouel H, Valdivia E, Ben Omar N (2008) Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Crit Rev Biotechnol 28:125–152

    Article  PubMed  CAS  Google Scholar 

  • Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720

    Article  PubMed  CAS  Google Scholar 

  • Garde S, Ávila M, Gaya P, Medina M, Núñez M (2006) Proteolysis of Hispanico cheese manufactured using lacticin 481-producing Lactococcus lactis ssp. lactis INIA 639. J Dairy Sci 89:840–849

    Article  PubMed  CAS  Google Scholar 

  • Giacometti A, Cirioni O, Kamysz W, Silvestri C, Licci A, Riva A, Lukasizk J, Scalise G (2005) In vitro activity of amphibian peptides alone and in combination with antimicrobial agents against multidrug-resistant pathogens isolated from surgical wound infection. Peptides 26(11):2111–2116

    Article  PubMed  CAS  Google Scholar 

  • Gillor O, Kirkup BC, Riley MA (2004) Colicins and microcins: the next generation antimicrobials. Adv Appl Microbiol 54:129–146

    Article  PubMed  CAS  Google Scholar 

  • Gillor O (2007) Bacteriocins’ role in bacterial communication. In: Riley MA, Chavan M (eds) Bacteriocins: ecology and evolution. Springer, Berlin, pp 135–146

    Chapter  Google Scholar 

  • Gobbetti M, de Angelis M, Di Cagno R, Minervini F, Limitone A (2007) Cell–cell communication in food related bacteria. Int J Food Microbiol 120:34–45

    Article  PubMed  CAS  Google Scholar 

  • Gordon YJ, Romanowski EG, McDermott AM (2005) A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res 30:505–515

    Article  PubMed  CAS  Google Scholar 

  • Gordon DM, Oliver E, Littlefield-Wyer J (2007) The diversity of bacteriocins in Gram-negative bacteria. In: Riley MA, Chavan M (eds) Bacteriocins: ecology and evolution. Springer, Berlin, pp 5–18

    Chapter  Google Scholar 

  • Goto Y, Li B, Claesen J, Shi Y, Bibb MJ, van der Donk WA (2010) Discovery of unique lanthionine synthetases reveals new mechanistic and evolutionary insights. PloS Biology 8(3):e1000339. doi:10.1371/journal.pbio.1000339

    Article  PubMed  CAS  Google Scholar 

  • Gratia A (1925) Sur un remarquable exemple d’antagonisme entre deux souches de colibacille. C R Soc Biol 93:1040–1041

    Google Scholar 

  • Gray EJ, Di Falco M, Souleimanov A, Smith DL (2006a) Proteomic analysis of the bacteriocin thuricin 17 produced by Bacillus thuringiensis NEB17. FEMS Microbiol Lett 255:27–32

    Article  PubMed  CAS  Google Scholar 

  • Gray EJ, Lee KD, Souleimanov AM, Di Falco MR, Zhou X, Ly A et al (2006b) A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB17: isolation and classification. J Appl Microbiol 100:545–554

    Article  PubMed  CAS  Google Scholar 

  • Gross DC, Vidaver AK (1979) Bacteriocins of phytopathogenic Corynebacterium species. Can J Microbiol 25:367–374

    Article  PubMed  CAS  Google Scholar 

  • Guina T, Yi EC, Wang H, Hackett M, Miller SI (2000) A PhoP-regulated outer membrane protease of Salmonella enterica serovar Typhimurium promotes resistance to alpha-helical antimicrobial peptides. J Bacteriol 182(14):4077–4086

    Article  PubMed  CAS  Google Scholar 

  • Gunn JS (2008) The Salmonella PmrAB regulon: lipopolysaccharide modifications, antimicrobial peptide resistance and more. Trends Microbiol 16:284–290

    Article  PubMed  CAS  Google Scholar 

  • Gut IM, Prouty AM, Ballard JD, van der Donk WA, Blanke SR (2008) Inhibition of Bacillus anthracis spore outgrowth by nisin. Antimicrob Agents Chemother 52(12):4281–4288

    Article  PubMed  CAS  Google Scholar 

  • Gut IM, Blanke SR, van der Donk WA (2011) Mechanism of inhibition of Bacillus anthracis spore outgrowth by the lantibiotic nisin. ACS Chem Biol 6(7):744–752

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara A, Imai N, Nakashima H, Toda Y, Kawabe M, Furukawa F, Delves-Broughton J, Yasuhara J, Hayashi S (2010) A 90 day oral toxicity study of nisin A, an anti-microbial peptide derived from Lactococcus lactis subsp. lactis, in F344 rats. Food Chem Toxicol 48:2421–2428

    Article  PubMed  CAS  Google Scholar 

  • Hamon Y, Peron Y (1963) Individualisation de quelques nouvelles families d’entérobacteriocines. C R Acad Sci 257:309–311

    CAS  Google Scholar 

  • Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  PubMed  CAS  Google Scholar 

  • Hancock RE, Rozek A (2002) Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett 206:143–149

    Article  PubMed  CAS  Google Scholar 

  • Hasper HE, de Kruijff B, Breukink E (2004) Assembly and stability of nisin-Lipid II pores. Biochemistry 43(36):11567–11575

    Article  PubMed  CAS  Google Scholar 

  • Héchard Y, Sahl HG (2002) Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie 84:545–557

    Article  PubMed  Google Scholar 

  • Héchard Y, Pelletier C, Cenatiempo Y, Frère J (2001) Analysis of σ-54 dependent genes in Enterococcus faecalis: a mannose PTS permease (EIIMan) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiology 147:1575–1580

    PubMed  Google Scholar 

  • Helmann JD, Moran CP (2002) RNA polymerase and σ factor in B. subtilis and its closest relatives. In: Sonenshein AL, Hoch JA, Losick R (eds) From genes to cells. ASM Press, Washington, DC, pp 289–312

    Google Scholar 

  • Hert AP, Roberts PD, Momol MT, Minsavage GV, Tudor-Nelson SM, Jones JB (2005) Relative importance of bacteriocin-like genes in antagonism of Xanthomonas perforans tomato race 3 to Xanthomonas euvesicatoria tomato race 1 strains 259. Appl Environ Microbiol 71:3581–3588

    Article  PubMed  CAS  Google Scholar 

  • Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activity of antimicrobial peptides. Biochim Biophys Acta 1778:357–375

    Article  PubMed  CAS  Google Scholar 

  • Housden NG, Wojdyla JA, Korczynska J, Grishkovskaya I, Kirkpatrick N, Brzozowski AM, Kleanthous C (2010) Directed epitope delivery across the Escherichia coli outer membrane through the porin OmpF. PNAS 107(50):21412–21417

    Article  PubMed  Google Scholar 

  • Hsu ST, Breukink E, de Kruijff B, Kaptein R, Bonvin AM, van Nuland NA (2002) Mapping the targeted membrane pore formation mechanism by solution NMR: the nisin Z and Lipid II interaction in SDS micelles. Biochemistry 41:7670–7676

    Article  PubMed  CAS  Google Scholar 

  • Imura Y, Nishida M, Ogawa Y, Takakura Y, Matsuzaki K (2007) Action mechanism of tachyplesin I and effects of PEGylation. Biochim Biophys Acta 1768:1160–1169

    Article  PubMed  CAS  Google Scholar 

  • Ishida K, Matsuda H, Murakami M, Yamaguchi K (1997) Kawaguchipeptin B, an antibacterial cyclic undecapeptide from the cyanobacterium Microcystis aeruginosa. J Nat Prod 60:724–726

    Article  PubMed  CAS  Google Scholar 

  • Ivanova I, Miteva V, Stefanova TS, Pantev A, Budakov I, Danova S et al (1998) Characterization of a bacteriocin produced by Streptococcus thermophilus 81. Int J Food Microbiol 42:147–158

    Article  PubMed  CAS  Google Scholar 

  • Jacob F (1954) Biosynthese induite et mode d’action d’une pyocine, antibiotique de Pseudomonas pyocyanea. Ann Inst Pasteur 86:149–160

    CAS  Google Scholar 

  • Jalc D, Laukove A (2002) Effect of nisin and monensin on rumen fermentation in artificial rumen. Berl Munch Tierärzl Wochenschr 115:6–10

    CAS  Google Scholar 

  • Jarvis B, Mahoney RR (1969) Inactivation of nisin by alpha chymotrypsin. J Dairy Sci 52:1448–1449

    Article  PubMed  CAS  Google Scholar 

  • Jayawardene A, Himsley HF (1969) Vibriocin: a bacteriocin from Vibrio comma. 1. Production, purification, morphology and immunological studies. Microbios 1B:87–98

    Google Scholar 

  • JECFA (1969) Specifications for the identity and purity of foods additives and their toxicological evaluation: some antibiotics. Twelfth Report of the Joint FAO/WHO Expert Committee on food additives, Geneva, 1–8 July 1968, pp 33–35. FAO Nutrition Meeting Series 45

    Google Scholar 

  • Joerger RD (2003) Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poult Sci 82:640–647

    PubMed  CAS  Google Scholar 

  • Joerger RD (2007) Antimicrobial films for food applications: a quantitative analysis of their effectiveness. Packag Technol Sci 20:231–273

    Article  CAS  Google Scholar 

  • Jung G (1991) Lantibiotics—ribosomally synthesized biologically active polypeptides containing sulfide bridges and α, β-didehydroamino acids. Angew Chem Int Ed Engl 30:1051–1068

    Article  Google Scholar 

  • Kamoun F, Mejdoub H, Aouissaoui H, Reinbolt J, Hammami A, Jaoua S (2005) Purification, amino acid sequence and characterization of bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. J Appl Microbiol 98:881–888

    Article  PubMed  CAS  Google Scholar 

  • Keymanesh K, Soltani S, Sardari S (2009) Application of antimicrobial peptides in agriculture and food industry. World J Microbiol Biotechnol 25:933–944

    Article  Google Scholar 

  • Khan H, Flint S, Yu PL (2010) Enterocins in food preservation. Int J Food Microbiol 141:1–10

    Article  PubMed  CAS  Google Scholar 

  • Klaenhammer TR (1988) Bacteriocins of lactic acid bacteria. Biochemie 70:337–349

    Article  CAS  Google Scholar 

  • Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–85

    PubMed  CAS  Google Scholar 

  • Klostermann K, Crispie F, Flynn J, Ross RP, Hill C, Meaney W (2008) Intramammary infusion of a live culture of Lactococcus lactis for treatment of bovine mastitis: comparison with antibiotic treatment in field trials. J Dairy Research 75:365–373

    Article  CAS  Google Scholar 

  • Kramer NE, van Hijum SAFT, Knol J, Kuipers OP (2006) Transcriptome analysis reveals mechanisms by which Lactococcus lactis acquires nisin resistance. Antimicrob Agents Chemother 50(5):1753–1761

    Article  PubMed  CAS  Google Scholar 

  • Kristian SA, Datta V, Weidenmaier C, Kansal R, Fedtke I, Peschel A, Gallo RL, Nizet V (2005) D-alanylation of teichoic acid promotes group A Streptococcus antimicrobial peptide resistance, neutrophil survival, and epithelial cell invasion. J Bacteriol 187:6719–6725

    Article  PubMed  CAS  Google Scholar 

  • Kupferwasser LI, Skurray RA, Brown MH, Firth N, Yeaman MR, Bayer AS (1999) Plasmid-mediated resistance to thrombin-induced platelet microbicidal protein in staphylococci: role of the qacA locus. Antimicrob Agents Chemother 43:2395–2399

    PubMed  CAS  Google Scholar 

  • Kuhar I, van Putten JP, Zgur-Bertok D, Gaastra W, Jordi BJ (2001) Codon-usage based regulation of colicin K synthesis by the stress alarmone ppGpp. Mol Microbiol 41:207–216

    Article  PubMed  CAS  Google Scholar 

  • Lee NK, Paik HD (2001) Partial characterization of lacticin NK24, a newly identified bacteriocin of Lactococcus lactis NK24 isolated from Jeot-gal. Food Microbiol 18:17–24

    Article  CAS  Google Scholar 

  • Lee J, McIntosh J, Hathaway BJ, Schmidt EW (2009) Using marine natural products to discover a protease that catalyses peptide macrocyclization of diverse substrates. J Am Chem Soc 131:2122–2124

    Article  PubMed  CAS  Google Scholar 

  • Leeuw E, Changqing L, Zeng P, Li C, de Buin MD, Lu WY, Breukink E, Lu W (2010) Functional interaction of human neutrophil peptide-1 with the cell wall precursor Lipid II. FEBS Lett 584(8):1543–1548

    Article  PubMed  CAS  Google Scholar 

  • Lehrer RI, Jung G, Ruchala P, Andre S, Gabius HJ, Lu W (2009) Multivalent binding of carbohydrates by the human alpha-defensin, HD5. J Immunol 183:480–490

    Article  PubMed  CAS  Google Scholar 

  • Leikoski N, Fewer DP, Sivonen K (2009) Widespread occurrence and lateral transfer of the cyanobactin biosynthesis gene cluster in cyanobacteria. Appl Environ Microbiol 75:853–857

    Article  PubMed  CAS  Google Scholar 

  • Leikoski N, Fewer DP, Jokela J, Wahlsten M, Rouhiainen L, Sivonen K (2010) Highly diverse cyanobactins in strains of the genus Anabaena. Appl Environ Microbiol 76:701–709

    Article  PubMed  CAS  Google Scholar 

  • Lewin CS, Amyes SG (1991) The role of the SOS response in bacteria exposed to zidovudine or trimethoprim. J Med Microbiol 34:329–332

    Article  PubMed  CAS  Google Scholar 

  • Lia B, Sherb D, Kelly L, Shi Y, Huang K, Knerr PJ, Joewono I, Rusch D, Chisholm SW, van der Donk WA (2010) Catalytic promiscuity in the biosynthesis of cyclic peptide secondary metabolites in planktonic marine cyanobacteria. PNAS 107(23):10430–10435

    Article  Google Scholar 

  • Linington RG, Gonzàles J, Ureña LD, Romero LI, Ortega-Barria E, Gerwick WH (2007) Venturamides A and B: antimalarial constituents of the Panamanian marine cyanobacterium Oscillatoria sp. J Nat Prod 70:397–401

    Article  PubMed  CAS  Google Scholar 

  • Magnusson J, Ström K, Roos S, Sjögren J, Schnürer J (2003) Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiol Lett 219:129–135

    Article  PubMed  CAS  Google Scholar 

  • Malloy JL, Veldhuizen RAW, Thibodeaux BA, O’Callaghan RJ, Wright JR (2005) Pseudomonas aeruginosa protease IV degrades surfactant proteins and inhibits surfactant host defense and biophysical functions. Am J Physiol Lung Cell Mol Physiol 288:409–418

    Article  CAS  Google Scholar 

  • Mantovani H, Russell JB (2001) Nisin resistance of Streptococcus bovis. Appl Environ Microbiol 67(2):808–813

    Article  PubMed  CAS  Google Scholar 

  • Matanic VCA, Castilla V (2004) Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. Int J Antimicrob Agents 23:382–389

    Article  CAS  Google Scholar 

  • Mauriello G, Ercolini D, La Storia A, Casaburi A, Villani F (2004) Development of polythene films for food packaging activated with an antilisterial bacteriocin from Lactobacillus curvatus 32Y. J Appl Microbiol 97:314–322

    Article  PubMed  CAS  Google Scholar 

  • McAuliffe O, Ross RP, Hill C (2001) Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol Rev 25:285–308

    Article  PubMed  CAS  Google Scholar 

  • Meng H, Kumar K (2007) Antimicrobial activity and protease stability of peptides containing fluorinated amino acids. J Am Chem Soc 129:15615–15622

    Article  PubMed  CAS  Google Scholar 

  • Messi P, Bondi M, Sabia C, Battini R, Manicardi G (2001) Detection and preliminary characterization of a bacteriocin (plantaricin 35d) produced by a Lactobacillus plantarum strain. Int J Food Microbiol 64:193–198

    Article  PubMed  CAS  Google Scholar 

  • Messi P, Guerrieri E, Bondi M (2003) Bacteriocin-like substance (BLS) production in Aeromonas hydrophila water isolates. FEMS Microbiol Lett 220(1):121–125

    Article  PubMed  CAS  Google Scholar 

  • Michel B (2005) After 30 years of study, the bacterial SOS response still surprises us. PLoS Biol 3:e255

    Article  PubMed  CAS  Google Scholar 

  • Michel-Briand Y, Baysse C (2002) The pyocins of Pseudomonas aeruginosa. Biochimie 84(5–6):499–510

    Article  PubMed  CAS  Google Scholar 

  • Miller SI, Ernst RK, Bader MW (2005) LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol 3:36–46

    Article  PubMed  CAS  Google Scholar 

  • Molina A, Molina MP, Althaus RL, Gallego L (2003) Residue persistence in sheep milk following antibiotic therapy. Vet J 165:84–89

    Article  PubMed  CAS  Google Scholar 

  • Mygind PH, Fischer RL, Schnorr KM, Hansen MT, Sönksen CP, Ludvigsen S, Raventós D, Buskov S, Christensen B, De Maria L, Taboureau O, Yaver D, Elvig-Jørgensen SG, Sørensen MV, Christensen BE, Kjaerulff S, Frimodt-Moller N, Lehrer RI, Zasloff M, Kristensen HH (2005) Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437:975–980

    Article  PubMed  CAS  Google Scholar 

  • Nes IF, Holo H (2000) Class II antimicrobial peptides from lactic acid bacteria. Biopolymers 55(1):50–61

    Article  PubMed  CAS  Google Scholar 

  • Nolan EM, Walsh CT (2009) How nature morphs peptide scaffolds into antibiotics. Chem Bio Chem 10:34–53

    Article  PubMed  CAS  Google Scholar 

  • Ogino J, Moore RE, Patterson GML, Smith CD (1996) Dendroamides, new cyclic hexapeptides from blue-green alga. Multidrug-resistance reversing activity of dendroamide A. J Nat Prod 59:581–586

    Article  PubMed  CAS  Google Scholar 

  • Oman TJ, van der Donk WA (2010) Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat Chem Biol 6:9–18

    Article  PubMed  CAS  Google Scholar 

  • Ondaa T, Yanagidab F, Tsujia M, Shinoharab T, Yokotsuka K (2003) Production and purification of a bacteriocin peptide produced by Lactococcus spp. strain GM005, isolated from Miso-paste. Int J Food Microbiol 87:153–159

    Article  CAS  Google Scholar 

  • Oppegard C, Rogne P, Emanuelsen L, Kristiansen PE, Fimland G, Nissen-Meyer J (2007) The two-peptide class II bacteriocins: structure, production, and mode of action. J Mol Microbiol Biotechnol 13:210–219

    Article  PubMed  CAS  Google Scholar 

  • Otto M (2006) Bacterial evasion of antimicrobial peptides by biofilm formation. Curr Top Microbiol Immunol 306:251–258

    Article  PubMed  CAS  Google Scholar 

  • Pag U, Sahl HG (2002) Multiple activities in lantibiotics – models for the design of novel antibiotics? Curr Pharm Des 8:815–833

    Article  PubMed  CAS  Google Scholar 

  • Paiva AD, Breukink E, Mantovani HC (2011) Role of lipid II and membrane thickness in the mechanism of action of the lantibiotic bovicin HC5. Antimicrob Agents Chemother 55:5284–5293

    Article  PubMed  CAS  Google Scholar 

  • Papagianni M (2003) Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnol Adv 21:465–499

    Article  PubMed  CAS  Google Scholar 

  • Papo N, Shai Y (2005) A molecular mechanism for lipopolysaccharide protection of Gram-negative bacteria from antimicrobial peptides. J Biol Chem 280:10378–10387

    Article  PubMed  CAS  Google Scholar 

  • Parente E, Moles M, Ricciardi A (1996) Leucocin F10, a bacteriocin from Leuconostoc carnosum. Int J Food Microbiol 33:231–243

    Article  PubMed  CAS  Google Scholar 

  • Pavlova OA, Severinov KV (2006) Posttranslationally modified microcins. Russ J Genet 42(12):1380–1389

    Article  CAS  Google Scholar 

  • Peschel A, Sahl HG (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4:529–536

    Article  PubMed  CAS  Google Scholar 

  • Peschel A, Jack RW, Otto M, Collins LV, Staubitz P, Nicholson G, Kalbacher H, Nieuwenhuizen WF, Jung G, Tarkowski A, van Kessel KPM, van Strijp JAG (2001) Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with L-lysine. J Exp Med 193:1067–1076

    Article  PubMed  CAS  Google Scholar 

  • Philmus B, Christiansen G, Yoshida WY, Hemscheidt TK (2008) Posttranslational modification in microviridin biosynthesis. Chem Bio Chem 9:3066–3073

    Article  PubMed  CAS  Google Scholar 

  • Poyart C, Pellegrini E, Marceau M, Baptista M, Jaubert F, Lamy MC, Trieu-Cot P (2003) Attenuated virulence of Streptococcus agalactiae deficient in D-alanyl-lipoteichoic acid is due to an increased susceptibility to defensins and phagocytic cells. Mol Microbiol 49:1615–1625

    Article  PubMed  CAS  Google Scholar 

  • Prasad S, Morris PC, Hansen R, Meaden PG, Austin B (2005) A novel bacteriocin-like substance (BLIS) from a pathogenic strain of Vibrio harveyi. Microbiology 151:3051–3058

    Article  PubMed  CAS  Google Scholar 

  • Pugsley AP (1984) The ins and outs of colicins. I. Production, and translocation across membranes. Microbiol Sci 1:168–175

    PubMed  CAS  Google Scholar 

  • Rayman K, Malik N, Hurst N (1983) Failure of nisin to inhibit outgrowth of Clostridium botulinum in a model cured meat system. Appl Environ Microbiol 46:1450–1452

    PubMed  CAS  Google Scholar 

  • Reddy KV, Aranha C, Gupta SM, Yedery RD (2004) Evaluation of antimicrobial peptide nisin as a safe vaginal contraceptive agent in rabbits: in vitro and in vivo studies. Reproduction 128:117–126

    Article  PubMed  CAS  Google Scholar 

  • Riley MA, Wertz JE (2002) Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie 84:357–364

    Article  PubMed  CAS  Google Scholar 

  • Rilla N, Martinéz B, Delgado T, Rodríguez A (2003) Inhibition of Clostridium tyrobutyricum in Vidiago cheese by Lactococcus lactis ssp. Lactis IPLA 729, a nisin Z producer. Int J Food Microbiol 85:23–33

    Article  PubMed  CAS  Google Scholar 

  • Rood JJ, Cole ST (1991) Molecular genetics and pathogenesis of Clostridium perfringens. Microbiol Rev 55:621–648

    PubMed  CAS  Google Scholar 

  • Rossi LM, Rangasamy P, Zhang J, Qiu XQ, Wu GY (2008) Research advances in the development of peptide antibiotics. J Pharm Sci 97(3):1060–1070

    Article  PubMed  CAS  Google Scholar 

  • Rotem S, Mor A (2009) Antimicrobial peptide mimics for improved therapeutic properties. Biochim Biophys Acta 1788:1582–1592

    Article  PubMed  CAS  Google Scholar 

  • Russell JB, Strobel HJ (1989) Mini-review: the effect of ionophores on ruminal fermentation. Appl Environ Microbiol 55:1–6

    PubMed  CAS  Google Scholar 

  • Ryan MP, Meaney WJ, Ross RP, Hill C (1998) Evaluation of lacticin 3147 and a teat seal containing this bacteriocin for inhibition of mastitis pathogens. Appl Environ Microbiol 64(6):2287–2290

    PubMed  CAS  Google Scholar 

  • Rydlo T, Miltz J, Mor A (2006) Eukaryotic antimicrobial peptides: promises and premises in food safety. J Food Sci 71(9):125–135

    Article  CAS  Google Scholar 

  • Salles B, Weinstock GM (1989a) Mutation of the promoter and LexA binding sites of cea, the gene encoding colicin E1. Mol Gen Genet 215:483–489

    Article  PubMed  CAS  Google Scholar 

  • Salles B, Weinstock GM (1989b) Interaction of the CRP-cAMP complex with the cea regulatory region. Mol Gen Genet 215:537–542

    Article  PubMed  CAS  Google Scholar 

  • Salvatella X, Caba JM, Albericio F, Giralt E (2003) Solution structure of the antitumor candidate trunkamide A by 2D NMR and restrained simulated annealing methods. J Org Chem 68:211–215

    Article  PubMed  CAS  Google Scholar 

  • Salzman RA, Koiwa H, Ibeas JI, Pardo JM, Hasegawa PM, Bressan RA (2004) Inorganic cations mediate plant PR5 protein antifungal activity through fungal Mnn1- and Mnn4-regulated cell surface glycans. Mol Plant Microbe Interact 17(7):780–788

    Article  PubMed  CAS  Google Scholar 

  • Sang Y, Blecha F (2008) Antimicrobial peptides and bacteriocins: alternatives to traditional antibiotics. Anim Heal Res Rev 9(2):227–235

    Article  Google Scholar 

  • SCF (1992) Opinions of the Scientific Committee for Food 26th Series. Commission of the European Communities. Available from http://europa.eu.int/comm/food/fs/sc/scf/reports/scf_reports_26.pdf. Accessed 8 Sep 2010

  • Schmidt EW, Donia MS (2009) Cyanobactin ribosomally synthesized peptides-a case of deep metagenome mining. Methods Enzymol 458:575–596

    Article  PubMed  CAS  Google Scholar 

  • Schmidt EW, Nelson JT, Rasko DA, Sudek S, Eisen JA, Haygood MG, Ravel J (2005) Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc Natl Acad Sci USA 102:7315–7320

    Article  PubMed  CAS  Google Scholar 

  • Schneider T, Kruse T, Wimmer R, Wiedemann I, Sass V, Pag U, Jansen A, Nielsen AK, Mygind PH, Raventós DS, Neve S, Ravn B, Bonvin AMJJ, De Maria L, Andersen AS, Gammelgaard LK, Sahl HG, Kristensen HH (2010) Plectasin, a fungal defensin antibiotic peptide, targets the bacterial cell precursor lipid II. Science 328:1168–1172

    Article  PubMed  CAS  Google Scholar 

  • Sears PM, Smith BS, Stewart WK, Gonzalez RN (1992) Evaluation of a nisin-based germicidal formulation on teat skin of live cows. J Dairy Sci 75:3185–3190

    Article  PubMed  CAS  Google Scholar 

  • Shafer WM, Qu XD, Waring AJ, Lehrer RI (1998) Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc Natl Acad Sci USA 95:1829–1833

    Article  PubMed  CAS  Google Scholar 

  • Sharma O, Zakharov SD, Cramer WA (2006) Colicins: bacterial/antibiotic peptides. In: Kastin AJ (ed) Handbook of biologically active peptides. Academic, Amsterdam, pp 115–123

    Chapter  Google Scholar 

  • Shehane SD, Sizemore RK (2002) Isolation and preliminary characterization of bacteriocins produced by Vibrio vulnificus. J Appl Microbiol 92:322–328

    Article  PubMed  CAS  Google Scholar 

  • Simon O (2005) Microorganisms as feed additives-probiotics. Adv Pork Prod 16:161–167

    Google Scholar 

  • Sit CS, Vederas JC (2008) Approaches to the discovery of new antibacterial agents based on bacteriocins. Biochem Cell Biol 86:116–123

    Article  PubMed  CAS  Google Scholar 

  • Sivonen K, Börner T (2008) Bioactive compounds produced by cyanobacteria. In: Herraro A, Flores E (eds) The cyanobacteria: molecular biology, genomics and evolution. Caister Academic, Norfolk, pp 159–197

    Google Scholar 

  • Sivonen K, Leikoski N, Fewer DP, Jokela J (2010) Cyanobactins-ribosomal cyclic peptides produced by cyanobacteria. Appl Microbiol Biotechnol 86:1213–1225

    Article  PubMed  CAS  Google Scholar 

  • Smarda J, Matejkova P, Vavrickova A (2002) Translocation of colicin from the receptor to the inner cell membrane function of the peptidoglycan layer. Folia Microbiol 47(3):213–217

    Article  CAS  Google Scholar 

  • Smarda J, Smajs D (1998) Colicins exocellular lethal proteins of Escherichia coli. Folia Microbiol 43(6):563–582

    Article  CAS  Google Scholar 

  • Smith L, Hasper H, Breukink E, Novak J, Cerkasov J, Hillman JD, Wilson-Stanford S, Orugunty RS (2008) Elucidation of the antimicrobial mechanism of mutacin 1140. Biochemistry 47:3308–3314

    Article  PubMed  CAS  Google Scholar 

  • Sodeinde OA, Subrahmanyam YV, Stark K, Quan T, Bao Y, Goguen JD (1992) A surface protease and the invasive character of plague. Science 258(5084):1004–1007

    Article  PubMed  CAS  Google Scholar 

  • Stergiou VA, Thomas LV, Adams MR (2006) Interactions of nisin with glutathione in a model protein system and meat. J Food Prot 69:951–956

    PubMed  CAS  Google Scholar 

  • Strandberg E, Ulrich AS (2004) NMR methods for studying membrane-active antimicrobial peptides. Concepts Magn Reson Part A 23(2):89–120

    Google Scholar 

  • Strauch E, Kaspar H, Schaudinn C, Dersch P, Madela K, Gewinner C, Hertwig S, Wecke J, Appel B (2001) Characterization of enterocoliticin, a phage tail-like bacteriocin, and its effect on pathogenic Yersinia enterocolitica strains. Appl Environ Microbiol 67(12):5634–5642

    Article  PubMed  CAS  Google Scholar 

  • Ström K, Sjörgren J, Broberg A, Schnürer J (2002) Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo (L-Phe-L-Pro) and cyclo (L-Phe-trans-14-OH-L-Pro) and phenyllactic acid. Appl Environ Microbiol 68:4322–4327

    Article  PubMed  CAS  Google Scholar 

  • Sugimura K, Nishihara T (1988) Purification, characterization, and primary structure of Escherichia coli protease VII with specificity for paired basic residues: identity of protease VII and OmpT. J Bacteriol 170(12):5625–5632

    PubMed  CAS  Google Scholar 

  • Tagg JR, Ragland NL (1991) Applications of BLIS typing to studies of the survival on surfaces of salivary streptococci and staphylococci. J Appl Bacteriol 71:339–342

    Article  PubMed  CAS  Google Scholar 

  • Tanabe H, Qu X, Weeks CS, Cummings JE, Kolusheva S, Walsh KB, Jelinek R, Vanderlick TK, Selsted ME, Ouellette AJ (2004) Structure-activity determinants in paneth cell alpha-defensins: loss-of-function in mouse cryptdin-4 by charge-reversal at arginine residue positions. J Biol Chem 279:11976–11983

    Article  PubMed  CAS  Google Scholar 

  • Tarakanov BV, Yakovleva AA, Aleshin VV (2004) Characterization of enterobacteria producing the low-molecular-weight antibiotics microcins. Microbiology 73(2):150–155

    Article  CAS  Google Scholar 

  • Tate K, Sutherland IW (2002) Antagonistic interactions amongst bacteriocin-producing enteric bacteria in dual species biofilms. J Appl Microbiol 93:345–352

    Article  Google Scholar 

  • Thomson CJ, Power E, Ruebsamen-Waigmann H, Labischinski H (2004) Antibacterial research and development in the 21st century – an industry perspective of the challenges. Curr Opin Microbiol 7:445–450

    Article  PubMed  Google Scholar 

  • Tillett D, Dittmann E, Erhard M, von Döhren H, Börner T, Neilan BA (2000) Structural organization of microcystin biosynthesis in Microcystin aeruginosa PCC7806: an integrated peptidepolyketide synthetase system. Chem Biol 7:753–764

    Article  PubMed  CAS  Google Scholar 

  • Todorov SD, Dicks LMT (2006) Parameters affecting the adsorption of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum 423 isolated from sorghum beer. Biotechnol J 1:405–409

    Article  PubMed  CAS  Google Scholar 

  • Todorov SD, Wachsman M, Tomé E, Dousset X, Destro MT, Dicks LMT, Franco BDGM, Vaz-Velho M, Drider D (2010) Characterisation of an antiviral pediocin-like bacteriocin produced by Enterococcus faeciem. Food Microbiol 27:869–879

    Article  PubMed  CAS  Google Scholar 

  • Todorov SD (2009) Bacteriocins from Lactobacillus plantarum – production, genetic organization and mode of action. A review. Braz J Microbiol 40:209–221

    Article  CAS  PubMed  Google Scholar 

  • Todorov SD (2010) Diversity of bacteriocinogenic lactic acid bacteria isolated from boza, a cereal-based fermented beverage from Bulgaria. Food Control 21:1011–1021

    Article  CAS  Google Scholar 

  • Twomey DP, Wheelock AI, Flynn J, Meaney WJ, Hill C, Ross RP (2000) Protection against Staphylococcus aureus mastitis in dairy cows using a bismuth-based teat seal containing the bacteriocin, lacticin 3147. J Dairy Sci 83(9):1981–1988

    Article  PubMed  CAS  Google Scholar 

  • Tzeng YL, Ambrose KD, Zughaier S, Zhou X, Miller YK, Shafer WM, Stephens DS (2005) Cationic antimicrobial peptide resistance in Neisseria meningitidis. J Bacteriol 187(15):5387–5396

    Article  PubMed  CAS  Google Scholar 

  • van Kraaij C, Breukink E, Rollema HS, Bongers RS, Kosters HA, de Kruijff B, Kuipers OP (2000) Engineering a disulfide bond and free thiols in the lantibiotic nisin Z. Eur J Biochem 267:901–909

    Article  PubMed  Google Scholar 

  • Vermeiren L, Devlieghere F, Vandekinderen I, Debevere J (2006) The interaction of the non-bacteriocinogenic Lactobacillus sakei 10A and lactocin S producing Lactobacillus sakei 148 towards Listeria monocytogenes on a model cooked ham. Food Microbiol 23:511–518

    Article  PubMed  CAS  Google Scholar 

  • Wachsman MB, Castilla V, Holgado APD, De Torres RA, Sesma F, Coto CE (2003) Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antivir Res 58:17–24

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Nan YH, Yang ST, Kang SW, Kim Y, Park IS, Hahm KS, Shin SY (2010) Cell selectivity and anti-inflammatory activity of a Leu/Lys-rich α-helical model antimicrobial peptide and its diastereomeric peptides. Peptides 31:1251–1261

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Owen SM, Rudolph DL, Cole AM, Hong T, Waring AJ, Lal RB, Lehrer RI (2004) Activity of alpha- and theta-defensins against primary isolates of HIV-1. J Immunol 173:515–520

    PubMed  CAS  Google Scholar 

  • Weidenmaier C, Kristian SA, Peschel A (2003) Bacterial resistance to antimicrobial host defenses – an emerging target for novel antiinfective strategies? Curr Drug Targets 4:643–649

    Article  PubMed  CAS  Google Scholar 

  • Welker M, von Döhren H (2006) Cyanobacterial peptides—nature’s own combinatorial biosynthesis. FEMS Microbiol Rev 30:530–563

    Article  PubMed  CAS  Google Scholar 

  • [WHO] World Health Organization (1995) The use of essential drugs. Sixth Report of the WHO expert committee, WHO Tech. Rep. Ser. No. 850. WHO, Rome

    Google Scholar 

  • Wiedemann I, Breukink E, van Kraaij C, Kuipers OP, Bierbaum G, de Kruijff B et al (2001) Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem 276:1772–1779

    PubMed  CAS  Google Scholar 

  • Wiedemann I, Böttiger T, Bonelli RR, Wiese A, Hagge SO, Gutsmann T, Seydel U, Deegan L, Hill C, Ross P, Sahl HG (2006) The mode of action of the lantibiotic lacticin 3147 – a complex mechanism involving specific interaction of two peptides and the cell wall precursor lipid II. Mol Microbiol 61(2):285–296

    Article  PubMed  CAS  Google Scholar 

  • Willey JM, van der Donk WA (2007) Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol 61:477–501

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Hu S, Cao L (2007) Therapeutic effect of nisin Z on subclinical mastitis in lactating cows. Antimicrob Agents Chemother 51(9):3131–3135

    Article  PubMed  CAS  Google Scholar 

  • Wu M, Maier E, Benz R, Hancock RE (1999) Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38:7235–7242

    Article  PubMed  CAS  Google Scholar 

  • Xie L, Miller LM, Chatterjee C, Averin O, Kelleher NL, van der Donk WA (2004) Lacticin 481: in vitro reconstitution of lantibiotic synthetase activity. Science 303:679–681

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama F, Imura Y, Ichimasa S, Fujita K, Zendo T, Nakayama J, Matsuzaki K, Sonomoto K (2009a) Lacticin Q, a lactococcal bacteriocin, causes high-level membrane permeability in the absence of specific receptors. Appl Environ Microbiol 75(2):538–541

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama F, Imura Y, Ohno K, Zendo T, Nakayama J, Matsuzaki K, Sonomoto K (2009b) Peptide-lipid huge toroidal pore, a new antimicrobial mechanism mediated by a lactococcal bacteriocin, lacticin Q. Antimicrob Agents Chemother 53(8):3211–3217

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama F, Shioya K, Zendo T, Nakayama J, Sonomoto K (2010) Effect of a negatively charged lipid on membrane-lacticin Q interaction and resulting pore formation. Biosci Biotechnol Biochem 74(1):218–221

    Article  PubMed  CAS  Google Scholar 

  • Yount NY, Bayer AS, Xiong YQ, Yeaman MR (2006) Advances in antimicrobial peptide immunobiology. Biopolymers 84:435–458

    Article  PubMed  CAS  Google Scholar 

  • Zakharova SD, Cramer WA (2002) Colicin crystal structures: pathways and mechanisms for colicin insertion into membranes. Biochim Biophys Acta 1565:333–346

    Article  Google Scholar 

  • Zelezetsky I, Pacor S, Pag U, Papo N, Shai Y, Sahl HG, Tossi A (2005) Controlled alteration of the shape and conformationalstability of alpha-helical cell-lytic peptides: effect on mode of action and cell specificity. Biochem J 390:177–188

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Falla TJ (2006) Antimicrobial peptides: therapeutic potential. Expert Opin Pharmacother 7(6):653–663

    Article  PubMed  CAS  Google Scholar 

  • Zhang HZ, Hackbarth CJ, Chansky KM, Chambers HF (2001) A proteolytic transmembrane signaling pathway and resistance to β-lactams in staphylococci. Science 291:1962–1965

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Lin S, Cotter RJ, Raetz CRH (1999) Lipid A modifications characteristic of Salmonella typhimurium are induced by NH4VO3 in Escherichia coli K12. Detection of 4-amino-4-deoxy-L-arabinose, phosphoethanolamine and palmitate. J Biol Chem 274:18503–18514

    Article  PubMed  CAS  Google Scholar 

  • Zhu S (2008) Discovery of six families of fungal defensin-like peptides provides insights into origin and evolution of the CSalphabeta defensins. Mol Immunol 45:828–838

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eefjan Breukink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel AG

About this chapter

Cite this chapter

Paiva, A.D., Breukink, E. (2013). Antimicrobial Peptides Produced by Microorganisms. In: Hiemstra, P., Zaat, S. (eds) Antimicrobial Peptides and Innate Immunity. Progress in Inflammation Research. Springer, Basel. https://doi.org/10.1007/978-3-0348-0541-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0541-4_3

  • Published:

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0348-0540-7

  • Online ISBN: 978-3-0348-0541-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics