Skip to main content

Immune Homeostasis of the Gut

  • Chapter
  • First Online:
Infection, Immune Homeostasis and Immune Privilege

Part of the book series: Birkhäuser Advances in Infectious Diseases ((BAID))

  • 933 Accesses

Abstract

Immune responses in the gastrointestinal tract are highly regulated to prevent inappropriate responses to the gut microbiota and food antigens while protecting the host from invasive infections. The following chapter describes the unique physiological adaptations in the intestine that allow for the appropriate induction of immune responses and the effector sites where these responses take place. Homeostasis is described as a process that involves the compartmentalization, monitoring, and selection of the members of the gut microbial ecosystem. The roles of the barrier and the microbiome as active participants in this process are highlighted. The role of important molecules such as retinoic acid, TGF-β, and microbiota-derived signals in directing tolerogenic responses is also discussed. Examples of disease states associated with alterations in the microbiome are used to emphasize the importance of maintaining a well-balanced gut microbial ecosystem. Together these mechanisms maintain the immune balance in the gastrointestinal tract that is essential for health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen-Nissen E, Smith KD, Strobe KL, Barrett SLR, Cookson BT, Logan SM, Aderem A (2005) Evasion of toll-like receptor 5 by flagellated bacteria. Proc Natl Acad Sci USA 102(26):9247–9252. doi:10.1073/pnas.0502040102

    PubMed  CAS  Google Scholar 

  • Arques JL, Hautefort I, Ivory K, Bertelli E, Regoli M, Clare S, Hinton JCD, Nicoletti C (2009) Salmonella induces flagellin- and MyD88-dependent migration of bacteria-capturing dendritic cells into the gut lumen. Gastroenterology 137(2):579–587.e1–2. doi:10.1053/j.gastro.2009.04.010

    PubMed  Google Scholar 

  • Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, Taniguchi T, Takeda K, Hori S, Ivanov II, Umesaki Y, Itoh K, Honda K (2011) Induction of colonic regulatory T cells by indigenous clostridium species. Science 331(6015):337–341. doi:10.1126/science.1198469

    PubMed  CAS  Google Scholar 

  • Atuma C, Strugala V, Allen A, Holm L (2001) The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol 280(5):G922–929

    PubMed  CAS  Google Scholar 

  • Bashir ME, Louie S, Shi HN, Nagler-Anderson C (2004) Toll-like receptor 4 signaling by intestinal microbes influences susceptibility to food allergy. J Immunol 172(11):6978–6987

    PubMed  CAS  Google Scholar 

  • Benveniste J, Lespinats G, Salomon J (1971) Serum and secretory IgA in axenic and holoxenic mice. J Immunol 107(6):1656–1662

    PubMed  CAS  Google Scholar 

  • Bjerke K, Brandtzaeg P, Fausta O (1988) T cell distribution is different in follicle-associated epithelium of human Peyer's patches and villous epithelium. Clin Exp Immunol 74(2):270–275

    PubMed  CAS  Google Scholar 

  • Boman HG (1995) Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 13(1):61–92

    PubMed  CAS  Google Scholar 

  • Brandl K, Plitas G, Schnabl B, DeMatteo RP, Pamer EG (2007) MyD88-mediated signals induce the bactericidal lectin RegIIIγ and protect mice against intestinal Listeria monocytogenes infection. J Exp Med 204(8):1891–1900. doi:10.1084/jem.20070563

    PubMed  CAS  Google Scholar 

  • Brandtzaeg P, Prydz H (1984) Direct evidence for an integrated function of J chain and secretory component in epithelial transport of immunoglobulins. Nature 311(5981):71–73

    PubMed  CAS  Google Scholar 

  • Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A (2011) Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol 17(12):1519–1528. doi:0.3748/wjg.v17.i12.1519

    PubMed  CAS  Google Scholar 

  • Cario E, Gerken G, Podolsky DK (2004) Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology 127(1):224–238. doi:10.1053/j.gastro.2004.04.015

    PubMed  CAS  Google Scholar 

  • Cario E, Golenbock DT, Visintin A, Runzi M, Gerken G, Podolsky DK (2006) Trypsin-sensitive modulation of intestinal epithelial MD-2 as mechanism of lipopolysaccharide tolerance. J Immunol 176(7):4258–4266

    PubMed  CAS  Google Scholar 

  • Cario E, Gerken G, Podolsky DK (2007) Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 132(4):1359–1374. doi:10.1053/j.gastro.2007.02.056

    PubMed  CAS  Google Scholar 

  • Carter PB, Collins FM (1974) The route of enteric infection in normal mice. J Exp Med 139(5):1189–1203

    PubMed  CAS  Google Scholar 

  • Cazac BB, Roes J (2000) TGF-beta receptor controls B cell responsiveness and induction of IgA in vivo. Immunity 13(4):443–451. doi:10.1016/S1074-7613(00)00044-3

    PubMed  CAS  Google Scholar 

  • Cerutti A, Chen K, Chorny A (2011) Immunoglobulin responses at the mucosal interface. Annu Rev Immunol 29(1):273–293. doi:10.1146/annurev-immunol-031210-101317

    PubMed  CAS  Google Scholar 

  • Chieppa M, Rescigno M, Huang AY, Germain RN (2006) Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J Exp Med 203(13):2841–2852. doi:10.1084/jem.20061884

    PubMed  CAS  Google Scholar 

  • Chodirker WB, Tomasi TB Jr (1963) Gamma-globulins: quantitative relationships in human serum and nonvascular fluids. Science 142(3595):1080–1081

    PubMed  CAS  Google Scholar 

  • Chow J, Mazmanian SK (2010) A pathobiont of the microbiota balances host colonization and intestinal inflammation. Cell Host Microbe 7(4):265–276. doi:10.1016/j.chom.2010.03.004

    PubMed  CAS  Google Scholar 

  • Coles M, Kioussis D, Veiga-Fernandes H (2010) Cellular and molecular requirements in lymph node and Peyer's patch development. In: Adrian L (ed) Progress in molecular biology and translational science, vol 92. Academic, Amsterdam, pp 177–205. doi:10.1016/S1877-1173(10)92008-5

    Google Scholar 

  • Corr SC, Gahan CCGM, Hill C (2008) M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol Med Microbiol 52(1):2–12. doi:10.1111/j.1574-695X.2007.00359.x

    PubMed  CAS  Google Scholar 

  • Corthesy B (2007) Roundtrip ticket for secretory IgA: role in mucosal homeostasis? J Immunol 178(1):27–32

    PubMed  CAS  Google Scholar 

  • De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107(33):14691–14696. doi:10.1073/pnas.1005963107

    PubMed  Google Scholar 

  • DePaolo RW, Abadie V, Tang F, Fehlner-Peach H, Hall JA, Wang W, Marietta EV, Kasarda DD, Waldmann TA, Murray JA, Semrad C, Kupfer SS, Belkaid Y, Guandalini S, Jabri B (2011) Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature 471(7337):220–224. doi:10.1038/nature09849

    PubMed  CAS  Google Scholar 

  • Erle DJ, Briskin MJ, Butcher EC, Garcia-Pardo A, Lazarovits AI, Tidswell M (1994) Expression and function of the MAdCAM-1 receptor, integrin alpha 4 beta 7, on human leukocytes. J Immunol 153(2):517–528

    PubMed  CAS  Google Scholar 

  • Fagarasan S, Kawamoto S, Kanagawa O, Suzuki K (2011) Adaptive immune regulation in the gut: T cell dependent and T cell independent IgA synthesis. Annu Rev Immunol 28(1):243–273. doi:10.1146/annurev-immunol-030409-101314

    Google Scholar 

  • Faith JJ, McNulty NP, Rey FE, Gordon JI (2011) Predicting a human gut microbiota's response to diet in gnotobiotic mice. Science 333(6038):101–104. doi:10.1126/science.1206025

    PubMed  CAS  Google Scholar 

  • Feng N, Burns JW, Bracy L, Greenberg HB (1994) Comparison of mucosal and systemic humoral immune responses and subsequent protection in mice orally inoculated with a homologous or a heterologous rotavirus. J Virol 68(12):7766–7773

    PubMed  CAS  Google Scholar 

  • Fihn BM, Sjoqvist A, Jodal M (2000) Permeability of the rat small intestinal epithelium along the villus-crypt axis: effects of glucose transport. Gastroenterology 119(4):1029–1036. doi:10.1053/gast.2000.18148

    PubMed  CAS  Google Scholar 

  • Frank DN, Zhu W, Sartor RB, Li E (2011) Investigating the biological and clinical significance of human dysbioses. Trends Microbiol 19:427–434. doi:10.1016/j.tim.2011.06.005

    PubMed  CAS  Google Scholar 

  • Furrie E, Macfarlane S, Thomson G, Macfarlane GT, Microbiology, Gut Biology Group TT, Tumour B (2005) Toll-like receptors-2, -3 and -4 expression patterns on human colon and their regulation by mucosal-associated bacteria. Immunology 115(4):565–574. doi:10.1111/j.1365-2567.2005.02200.x

    PubMed  CAS  Google Scholar 

  • Gaboriau-Routhiau V, Rakotobe S, LÈcuyer E, Mulder I, Lan A, Bridonneau C, Rochet V, Pisi A, De Paepe M, Brandi G, Eberl G, Snel J, Kelly D, Cerf-Bensussan N (2009) The Key role of segmented filamentous bacteria in the coordinated maturation of Gut helper T cell responses. Immunity 31(4):677–689. doi:10.1016/j.immuni.2009.08.020

    PubMed  CAS  Google Scholar 

  • Geissmann F, Gordon S, Hume DA, Mowat AM, Randolph GJ (2010) Unravelling mononuclear phagocyte heterogeneity. Nat Rev Immunol 10(6):453–460. doi:10.1038/nri2784

    PubMed  CAS  Google Scholar 

  • Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL (2001) Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 167(4):1882–1885

    PubMed  CAS  Google Scholar 

  • Gorfu, Rivera-Nieves, Ley (2009) Role of β7 integrins in intestinal lymphocyte homing and retention. Curr Mol Med 9(7):836–850

    Google Scholar 

  • Gum JR, Hicks JW, Toribara NW, Siddiki B, Kim YS (1994) Molecular cloning of human intestinal mucin (MUC2) cDNA. Identification of the amino terminus and overall sequence similarity to prepro-von Willebrand factor. J Biol Chem 269(4):2440–2446

    PubMed  CAS  Google Scholar 

  • Hadis U, Wahl B, Schulz O, Hardtke-Wolenski M, Schippers A, Wagner N, Muller W, Sparwasser T, Forster R, Pabst O (2011) Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34(2):237–246. doi:10.1016/j.immuni.2011.01.016

    PubMed  CAS  Google Scholar 

  • Hall JA, Cannons JL, Grainger JR, Dos Santos LM, Hand TW, Naik S, Wohlfert EA, Chou DB, Oldenhove G, Robinson M, Grigg ME, Kastenmayer R, Schwartzberg PL, Belkaid Y (2011a) Essential role for retinoic acid in the promotion of CD4+ T cell effector responses via retinoic acid receptor alpha. Immunity 34(3):435–447. doi:10.1016/j.immuni.2011.03.003

    PubMed  CAS  Google Scholar 

  • Hall JA, Grainger JR, Spencer SP, Belkaid Y (2011b) The role of retinoic acid in tolerance and immunity. Immunity 35(1):13–22. doi:10.1016/j.immuni.2011.07.002

    PubMed  CAS  Google Scholar 

  • Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, Albrecht M, Mayr G, De La Vega FM, Briggs J, Gunther S, Prescott NJ, Onnie CM, Hasler R, Sipos B, Folsch UR, Lengauer T, Platzer M, Mathew CG, Krawczak M, Schreiber S (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 39(2):207–211. doi:10.1038/ng1954

    PubMed  CAS  Google Scholar 

  • Hatayama H, Iwashita J, Kuwajima A, Abe T (2007) The short chain fatty acid, butyrate, stimulates MUC2 mucin production in the human colon cancer cell line, LS174T. Biochem Biophys Res Commun 356(3):599–603. doi:10.1016/j.bbrc.2007.03.025

    PubMed  CAS  Google Scholar 

  • He B, Xu W, Santini PA, Polydorides AD, Chiu A, Estrella J, Shan M, Chadburn A, Villanacci V, Plebani A, Knowles DM, Rescigno M, Cerutti A (2007) Intestinal bacteria trigger T cell-independent immunoglobulin A2 class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 26(6):812–826. doi:10.1016/j.immuni.2007.04.014

    PubMed  CAS  Google Scholar 

  • Hugot J-P, Chamaillard M, Zouali H, Lesage S, Cezard J-P, Belaiche J, Almer S, Tysk C, O'Morain CA, Gassuli M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel J-F, Sahbatou M, Thomas G (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411:599–603. doi:10.1038/35079107

    PubMed  CAS  Google Scholar 

  • Iliev ID, Mileti E, Matteoli G, Chieppa M, Rescigno M (2009a) Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning. Mucosal Immunol 2(4):340–350. doi:10.1038/mi.2009.13

    PubMed  CAS  Google Scholar 

  • Iliev ID, Spadoni I, Mileti E, Matteoli G, Sonzogni A, Sampietro GM, Foschi D, Caprioli F, Viale G, Rescigno M (2009b) Human intestinal epithelial cells promote the differentiation of tolerogenic dendritic cells. Gut 58(11):1481–1489. doi:10.1136/gut.2008.175166

    PubMed  CAS  Google Scholar 

  • Ivanov II, Diehl GE, Littman DR (2006) Lymphoid tissue inducer cells in intestinal immunity. Curr Top Microbiol Immunol 308:59–82

    PubMed  CAS  Google Scholar 

  • Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR (2009) Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria. Cell 139(3):485–498. doi:10.1016/j.cell.2009.09.033

    PubMed  CAS  Google Scholar 

  • Johansen FE, Pekna M, Norderhaug IN, Haneberg B, Hietala MA, Krajci P, Betsholtz C, Brandtzaeg P (1999) Absence of epithelial immunoglobulin A transport, with increased mucosal leakiness, in polymeric immunoglobulin receptor/secretory component-deficient mice. J Exp Med 190(7):915–922. doi:10.1084/jem.190.7.915

    PubMed  CAS  Google Scholar 

  • Johansson MEV, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci 105(39):15064–15069. doi:10.1073/pnas.0803124105

    PubMed  CAS  Google Scholar 

  • Johansson-Lindbom B, Svensson M, Wurbel MA, Malissen B, Marquez G, Agace W (2003) Selective generation of gut tropic T cells in gut-associated lymphoid tissue (GALT): requirement for GALT dendritic cells and adjuvant. J Exp Med 198(6):963–969. doi:10.1084/jem.20031244

    PubMed  CAS  Google Scholar 

  • Kaufman DR, De Calisto J, Simmons NL, Cruz AN, Villablanca EJ, Mora JR, Barouch DH (2011) Vitamin a deficiency impairs vaccine-elicited gastrointestinal immunity. J Immunol 187(4):1877–1883. doi:10.4049/jimmunol.1101248

    PubMed  CAS  Google Scholar 

  • Kim PH, Kagnoff MF (1990) Transforming growth factor-beta 1 is a costimulator for IgA production. J Immunol 144(9):3411–3416

    PubMed  CAS  Google Scholar 

  • Kim JG, Lee SJ, Kagnoff MF (2004) Nod1 Is an essential signal transducer in intestinal epithelial cells infected with bacteria that avoid recognition by toll-like receptors. Infect Immun 72(3):1487–1495. doi:10.1128/IAI.72.3.1487-1495.2004

    PubMed  CAS  Google Scholar 

  • Kunkel D, Kirchhoff D, Nishikawa S, Radbruch A, Scheffold A (2003) Visualization of peptide presentation following oral application of antigen in normal and Peyer's patches-deficient mice. Eur J Immunol 33(5):1292–1301. doi:10.1002/eji.200323383

    PubMed  CAS  Google Scholar 

  • Lala S, Ogura Y, Osborne C, Hor SY, Bromfield A, Davies S, Ogunbiyi O, Nunez G, Keshav S (2003) Crohn's disease and the NOD2 gene: a role for paneth cells. Gastroenterology 125(1):47–57. doi:10.1016/S0016-5085(03)00661-9

    PubMed  CAS  Google Scholar 

  • Lebeis SL, Bommarius B, Parkos CA, Sherman MA, Kalman D (2007) TLR signaling mediated by MyD88 is required for a protective innate immune response by neutrophils to citrobacter rodentium. J Immunol 179(1):566–577

    PubMed  CAS  Google Scholar 

  • Lee YK, Mazmanian SK (2010) Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330(6012):1768–1773. doi:10.1126/science.1195568

    PubMed  CAS  Google Scholar 

  • Lefrancois L, Goodman T (1989) In vivo modulation of cytolytic activity and Thy-1 expression in TCR-gamma delta + intraepithelial lymphocytes. Science 243(4899):1716–1718. doi:10.1126/science.2564701

    PubMed  CAS  Google Scholar 

  • Leishman AJ, Naidenko OV, Attinger A, Koning F, Lena CJ, Xiong Y, Chang H-C, Reinherz E, Kronenberg M, Cheroutre H (2001) T cell responses modulated through interaction between CD8aa and the nonclassical MHC Class I molecule TL. Science 294:1936–1939. doi:10.1126/science.1063564

    PubMed  CAS  Google Scholar 

  • Lorenz RG, Chaplin DD, McDonald KG, McDonough JS, Newberry RD (2003) Isolated lymphoid follicle formation is inducible and dependent upon lymphotoxin-sufficient B lymphocytes, lymphotoxin β receptor, and TNF receptor I function. J Immunol 170(11):5475–5482

    PubMed  CAS  Google Scholar 

  • Lycke N, Eriksen L, Holmgren J (1987) Protection against cholera toxin after oral immunization is thymus-dependent and associated with intestinal production of neutralizing IgA antitoxin. Scand J Immunol 25(4):413–419

    PubMed  CAS  Google Scholar 

  • Macpherson AJ, Smith K (2006) Mesenteric lymph nodes at the center of immune anatomy. J Exp Med 203(3):497–500. doi:10.1084/jem.20060227

    PubMed  CAS  Google Scholar 

  • Macpherson AJ, Uhr T (2004) Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303(5664):1662–1665. doi:10.1126/science.1091334

    PubMed  CAS  Google Scholar 

  • Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P (2007) The immune geography of IgA induction and function. Mucosal Immunol 1(1):11–22. doi:10.1038/mi.2007.6

    Google Scholar 

  • Macpherson AJ, Slack E, Geuking MB, McCoy KD (2009) The mucosal firewalls against commensal intestinal microbes. Semin Immunopathol 31(2):145–149. doi:10.1007/s00281-009-0174-3

    PubMed  Google Scholar 

  • Man SM, Kaakoush NO, Mitchell HM (2011) The role of bacteria and pattern-recognition receptors in Crohn's disease. Nat Rev Gastroenterol Hepatol 8:152–168. doi:10.1038/nrgastro.2011.56

    PubMed  Google Scholar 

  • Manicassamy S, Reizis B, Ravindran R, Nakaya H, Salazar-Gonzalez RM, Wang YC, Pulendran B (2010) Activation of beta-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science 329(5993):849–853. doi:10.1126/science.1188510

    PubMed  CAS  Google Scholar 

  • Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P, Roca J, Dore J (2006) Reduced diversity of faecal microbiota in Crohn‚Äôs disease revealed by a metagenomic approach. Gut 55(2):205–211. doi:10.1136/gut.2005.073817

    PubMed  CAS  Google Scholar 

  • Mariadason JM, Barkla DH, Gibson PR (1997) Effect of short-chain fatty acids on paracellular permeability in Caco-2 intestinal epithelium model. Am J Physiol Gastrointest Liver Physiol 272(4):G705–G712

    CAS  Google Scholar 

  • Martin B, Hirota K, Cua DJ, Stockinger B, Veldhoen M (2009) Interleukin-17-producing [gamma][delta] T cells selectively expand in response to pathogen products and environmental signals. Immunity 31(2):321–330. doi:10.1016/j.immuni.2009.06.020

    PubMed  CAS  Google Scholar 

  • Matteoli G, Mazzini E, Iliev ID, Mileti E, Fallarino F, Puccetti P, Chieppa M, Rescigno M (2010) Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction. Gut 59(5):595–604. doi:10.1136/gut.2009.185108

    PubMed  CAS  Google Scholar 

  • McFall-Ngai MJ (1999) Consequences of evolving with bacterial symbionts: insights from the squid-vibrio associations. Annu Rev Ecol Syst 30:235–256

    Google Scholar 

  • Medzhitov R, Janeway CA Jr (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296(5566):298–300. doi:10.1126/science.1068883

    PubMed  CAS  Google Scholar 

  • Montminy SW, Khan N, McGrath S, Walkowicz MJ, Sharp F, Conlon JE, Fukase K, Kusumoto S, Sweet C, Miyake K, Akira S, Cotter RJ, Goguen JD, Lien E (2006) Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nat Immunol 7(10):1066–1073. doi:10.1038/ni1386

    PubMed  CAS  Google Scholar 

  • Mora JR, Bono MR, Manjunath N, Weninger W, Cavanagh LL, Rosemblatt M, Von Andrian UH (2003) Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature 424(6944):88–93. doi:10.1038/nature01726

    PubMed  CAS  Google Scholar 

  • Mora JR, Iwata M, Eksteen B, Song SY, Junt T, Senman B, Otipoby KL, Yokota A, Takeuchi H, Ricciardi-Castagnoli P, Rajewsky K, Adams DH, von Andrian UH (2006) Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314(5802):1157–1160. doi:10.1126/science.1132742

    PubMed  CAS  Google Scholar 

  • Moreau MC, Ducluzeau R, Guy-Grand D, Muller MC (1978) Increase in the population of duodenal immunoglobulin A plasmocytes in axenic mice associated with different living or dead bacterial strains of intestinal origin. Infect Immun 21(2):532–539

    PubMed  CAS  Google Scholar 

  • Mostov KE, Deitcher DL (1986) Polymeric immunoglobulin receptor expressed in MDCK cells transcytoses IgA. Cell 46(4):613–621

    PubMed  CAS  Google Scholar 

  • Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, Henrissat B, Knight R, Gordon JI (2011) Diet drives convergence in Gut microbiome functions across mammalian phylogeny and within humans. Science 332(6032):970–974. doi:10.1126/science.1198719

    PubMed  CAS  Google Scholar 

  • Munford RS, Varley AW (2006) Shield as signal: lipopolysaccharides and the evolution of immunity to gram-negative bacteria. PLoS Pathog 2(6):e67. doi:10.1371/journal.ppat.0020067

    PubMed  Google Scholar 

  • Nava GM, Stappenbeck TS (2011) Diversity of the autochthonous colonic microbiota. Gut Microbes 2(2):99–104

    PubMed  Google Scholar 

  • Niess JH, Adler G (2010) Enteric flora expands gut lamina propria CX3CR1+ dendritic cells supporting inflammatory immune responses under normal and inflammatory conditions. J Immunol 184(4):2026–2037. doi:10.4049/jimmunol.0901936

    PubMed  CAS  Google Scholar 

  • Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, Vyas JM, Boes M, Ploegh HL, Fox JG, Littman DR, Reinecker HC (2005) CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307(5707):254–258. doi:10.1126/science.1102901

    PubMed  CAS  Google Scholar 

  • Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirschner BS, Hanauer SB, Nunez G, Cho JH (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411(6837):603–606. doi:10.1038/35079114

    PubMed  CAS  Google Scholar 

  • Otte JM, Cario E, Podolsky DK (2004) Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology 126(4):1054–1070. doi:10.1053/j.gastro.2004.01.007

    PubMed  CAS  Google Scholar 

  • Owen RL, Jones AL (1974) Epithelial cell specialization within human Peyer's patches: an ultrastructural study of intestinal lymphoid follicles. Gastroenterology 66(2):189–203

    PubMed  CAS  Google Scholar 

  • Peng LH, He Z, Chen W, Holzman IR, Lin J (2007) Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier. Pediatr Res 61(1):37–41. doi:10.1203/01.pdr.0000250014.92242.f3

    PubMed  CAS  Google Scholar 

  • Peng L, Li Z-R, Green RS, Holzman IR, Lin J (2009) Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr 139(9):1619–1625

    PubMed  CAS  Google Scholar 

  • Peterson DA, Frank DN, Pace NR, Gordon JI (2008) Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe 3(6):417–427. doi:10.1016/j.chom.2008.05.001

    PubMed  CAS  Google Scholar 

  • Petersson J, Schreiber O, Hansson GC, Gendler SJ, Velcich A, Lundberg JO, Roos S, Holm L, Phillipson M (2011) Importance and regulation of the colonic mucus barrier in a mouse model of colitis. Am J Physiol Gastrointest Liver Physiol 300(2):G327–333. doi:10.1152/ajpgi.00422.2010

    PubMed  CAS  Google Scholar 

  • Phalipon A, Corthesy B (2003) Novel functions of the polymeric Ig receptor: well beyond transport of immunoglobulins. Trends Immunol 24(2):55–58. doi:10.1016/S1471-4906(02)00031-5

    PubMed  CAS  Google Scholar 

  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Jian M, Zhou Y, Li Y, Zhang X, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich SD (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65. doi:10.1038/nature08821

    PubMed  CAS  Google Scholar 

  • Rey J, Garin N, Spertini F, Corthesy B (2004) Targeting of secretory IgA to Peyer's patch dendritic and T cells after transport by intestinal M cells. J Immunol 172(5):3026–3033

    PubMed  CAS  Google Scholar 

  • Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, Green T, Kuballa P, Barmada MM, Datta LW, Shugart YY, Griffiths AM, Targan SR, Ippoliti AF, Bernard EJ, Mei L, Nicolae DL, Regueiro M, Schumm LP, Steinhart AH, Rotter JI, Duerr RH, Cho JH, Daly MJ, Brant SR (2007) Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 39(5):596–604. doi:10.1038/ng2032

    PubMed  CAS  Google Scholar 

  • Robinson JK, Blanchard TG, Levine AD, Emancipator SN, Lamm ME (2001) A mucosal IgA-mediated excretory immune system in vivo. J Immunol 166(6):3688–3692

    PubMed  CAS  Google Scholar 

  • Round JL, Mazmanian SK (2010) Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA 107(27):12204–12209. doi:10.1073/pnas.0909122107

    PubMed  CAS  Google Scholar 

  • Salzman NH (2008) Defensins versus bacteria: not just antibiotics anymore. Gastroenterology 134(7):2174–2177. doi:10.1053/j.gastro.2008.04.028

    PubMed  CAS  Google Scholar 

  • Salzman NH, Hung K, Haribhai D, Chu H, Karlsson-Sjoberg J, Amir E, Teggatz P, Barman M, Hayward M, Eastwood D, Stoel M, Zhou Y, Sodergren E, Weinstock GM, Bevins CL, Williams CB, Bos NA (2010) Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 11(1):76–83. doi:10.1038/ni.1825

    PubMed  CAS  Google Scholar 

  • Sansonetti PJ (2010) To be or not to be a pathogen: that is the mucosally relevant question. Mucosal Immunol 4(1):8–14. doi:10.1038/mi.2010.77

    PubMed  Google Scholar 

  • Santaolalla R, Fukata M, Abreu MT (2011) Innate immunity in the small intestine. Curr Opin Gastroenterol 27(2):125–131. doi:10.1097/MOG.0b013e3283438dea

    PubMed  Google Scholar 

  • Schilling JD, Martin SM, Hung CS, Lorenz RG, Hultgren SJ (2003) Toll-like receptor 4 on stromal and hematopoietic cells mediates innate resistance to uropathogenic Escherichia coli. Proc Natl Acad Sci USA 100(7):4203–4208. doi:10.1073/pnas.0736473100

    PubMed  CAS  Google Scholar 

  • Schulz O, Jaensson E, Persson EK, Liu X, Worbs T, Agace WW, Pabst O (2009) Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J Exp Med 206(13):3101–3114. doi:10.1084/jem.20091925

    PubMed  CAS  Google Scholar 

  • Sheridan BS, Lefrancois L (2010) Intraepithelial lymphocytes: to serve and protect. Curr Gastroenterol Rep 12(6):513–521. doi:10.1007/s11894-010-0148-6

    PubMed  Google Scholar 

  • Shimada S, Kawaguchi-Miyashita M, Kushiro A, Sato T, Nanno M, Sako T, Matsuoka Y, Sudo K, Tagawa Y, Iwakura Y, Ohwaki M (1999) Generation of polymeric immunoglobulin receptor-deficient mouse with marked reduction of secretory IgA. J Immunol 163(10):5367–5373

    PubMed  CAS  Google Scholar 

  • Siewert C, Menning A, Dudda J, Siegmund K, Lauer U, Floess S, Campbell DJ, Hamann A, Huehn J (2007) Induction of organ-selective CD4+ regulatory T cell homing. Eur J Immunol 37(4):978–989. doi:10.1002/eji.200636575

    PubMed  CAS  Google Scholar 

  • Slack E, Hapfelmeier S, Stecher B, Velykoredko Y, Stoel M, Lawson MA, Geuking MB, Beutler B, Tedder TF, Hardt WD, Bercik P, Verdu EF, McCoy KD, Macpherson AJ (2009) Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science 325(5940):617–620. doi:10.1126/science.1172747

    PubMed  CAS  Google Scholar 

  • Söderhäll K, Augustin R, Bosch TCG (2010) Cnidarian immunity: a tale of two barriers. In: Söderhäll K (ed) Invertebrate immunity, vol 708, Advances in experimental medicine and biology. Springer, New York, pp 1–16. doi:doi:10.1007/978-1-4419-8059-5_1

    Google Scholar 

  • Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M, Mora JR, Belkaid Y (2007) Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 Treg cells via retinoic acid. J Exp Med 204(8):1775–1785. doi:10.1084/jem.20070602

    PubMed  CAS  Google Scholar 

  • Suzuki K, Maruya M, Kawamoto S, Sitnik K, Kitamura H, Agace WW, Fagarasan S (2010) The sensing of environmental stimuli by follicular dendritic cells promotes immunoglobulin a generation in the Gut. Immunity 33(1):71–83. doi:10.1016/j.immuni.2010.07.003

    PubMed  CAS  Google Scholar 

  • Swidsinski A, Ladhoff A, Pernthaler A, Swidsinski S, Loening-Baucke V, Ortner M, Weber J, Hoffmann U, Schreiber S, Dietel M, Lochs H (2002) Mucosal flora in inflammatory bowel disease. Gastroenterology 122(1):44–54. doi:10.1053/gast.2002.30294

    PubMed  Google Scholar 

  • Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81(3):1031–1064

    PubMed  CAS  Google Scholar 

  • Turnbaugh PJ, Backhed F, Fulton L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3(4):213–223. doi:10.1016/j.chom.2008.02.015

    PubMed  CAS  Google Scholar 

  • Turner JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9(11):799–809. doi:10.1038/nri2653

    PubMed  CAS  Google Scholar 

  • Vamadevan AS, Fukata M, Arnold ET, Thomas LS, Hsu D, Abreu MT (2010) Regulation of toll-like receptor 4-associated MD-2 in intestinal epithelial cells: a comprehensive analysis. Innate Immun 16(2):93–103. doi:10.1177/1753425909339231

    PubMed  CAS  Google Scholar 

  • Van den Abbeele P, Van de Wiele T, Verstraete W, Possemiers S (2011) The host selects mucosal and luminal associations of coevolved gut microorganisms: a novel concept. FEMS Microbiol Rev 35(4):681–704. doi:10.1111/j.1574-6976.2011.00270.x

    PubMed  Google Scholar 

  • Villablanca EJ, Cassani B, von Andrian UH, Mora JR (2011) Blocking lymphocyte localization to the gastrointestinal mucosa as a therapeutic strategy for inflammatory bowel diseases. Gastroenterology 140(6):1776–1784. doi:10.1053/j.gastro.2011.02.015

    PubMed  CAS  Google Scholar 

  • Wells JM, Rossi O, Meijerink M, van Baarlen P (2011) Epithelial crosstalk at the microbiota–mucosal interface. Proc Natl Acad Sci USA 108(Suppl 1):4607–4614. doi:10.1073/pnas.1000092107

    PubMed  CAS  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95(12):6578–6583

    PubMed  CAS  Google Scholar 

  • Willemsen LEM, Koetsier MA, van Deventer SJH, van Tol EAF (2003) Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E1 and E2 production by intestinal myofibroblasts. Gut 52(10):1442–1447. doi:10.1136/gut.52.10.1442

    PubMed  CAS  Google Scholar 

  • Wilson NS, Young LJ, Kupresanin F, Naik SH, Vremec D, Heath WR, Akira S, Shortman K, Boyle J, Maraskovsky E, Belz GT, Villadangos JA (2007) Normal proportion and expression of maturation markers in migratory dendritic cells in the absence of germs or Toll-like receptor signaling. Immunol Cell Biol 86(2):200–205

    PubMed  Google Scholar 

  • Worbs T, Bode U, Yan S, Hoffmann MW, Hintzen G, Bernhardt G, Forster R, Pabst O (2006) Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. J Exp Med 203(3):519–527. doi:10.1084/jem.20052016

    PubMed  CAS  Google Scholar 

  • Yamanaka T, Straumfors A, Morton H, Fausa O, Brandtzaeg P, Farstad I (2001) M cell pockets of human Peyer's patches are specialized extensions of germinal centers. Eur J Immunol 31(1):107–117. doi:10.1002/1521-4141(200101)31:1<107::AID-IMMU107>3.0.CO;2-4

    PubMed  CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395. doi:10.1038/415389a

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cathryn Nagler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel

About this chapter

Cite this chapter

Wroblewska, J., Nagler, C. (2012). Immune Homeostasis of the Gut. In: Stein-Streilein, J. (eds) Infection, Immune Homeostasis and Immune Privilege. Birkhäuser Advances in Infectious Diseases. Springer, Basel. https://doi.org/10.1007/978-3-0348-0445-5_6

Download citation

Publish with us

Policies and ethics