Skip to main content

rHuG-CSF in Peripheral Blood Progenitor Cell Transplantation

  • Chapter
  • First Online:
Twenty Years of G-CSF

Part of the book series: Milestones in Drug Therapy ((MDT))

  • 960 Accesses

Abstract

The ability of rHuG-CSF to mobilize progenitor cells to the peripheral blood was unexpected when the possibility was first raised by Professor Don Metcalf. Initial scepticism was overcome when groups from Adelaide and Melbourne conclusively demonstrated the efficacy of rHuG-CSF mobilized peripheral blood transplantation in both the autologous and allogeneic settings. Today, progenitor cells mobilized by means of rHuG-CSF constitute the predominant source for transplantation worldwide.

The mechanisms by which rHuG-CSF mobilizes stem cells is an area of active research. Multiple pathways are involved, including disruption of the interaction between CXCR4 and SDF-1, and suppression of trophic macrophages within the stem cell niche. Peripheral blood CD34+ cell counts increase in a predictable manner following rHuG-CSF administration, and minimal and optimal CD34+ cell collections have been defined based on engraftment studies. Despite considerable optimization of regimens, inadequate CD34+ cell mobilization occurs in approximately 20% of attempts due to various clinical and genetic factors. rHuG-CSF remains an important component of remobilization strategies, including use in combination with the partial CXCR4 agonist plerixafor. Ex vivo efforts to expand the progenitor cell compartment, or to purge contaminating tumour cells in the case of autologous transplantation, remain experimental. Recent research has begun to unravel complex immunological differences between mobilized peripheral blood and bone marrow stem cell sources. It is hoped that these insights will lead to further improvements in stem cell transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. To LB, Haylock DN, Kimber RJ, Juttner CA (1984) High levels of circulating haemopoietic stem cells in very early remission from acute non-lymphoblastic leukaemia and their collection and cryopreservation. Br J Haematol 58:399–410

    Article  PubMed  CAS  Google Scholar 

  2. Juttner CA, To LB, Haylock DN, Branford A, Kimber RJ (1995) Circulating autologous stem cells collected in very early remission from acute non-lymphoblastic leukaemia produce prompt but incomplete haemopoietic reconstitution after high dose melphalan or supralethal chemoradiotherapy. Br J Haematol 61:739–745

    Article  Google Scholar 

  3. To LB, Dyson PG, Branford AL et al (1987) Peripheral blood stem cells collected in very early remission produce rapid and sustained autologous haemopoietic reconstitution in acute non-lymphoblastic leukaemia. Bone Marrow Transplant 2:103–108

    PubMed  CAS  Google Scholar 

  4. To LB, Dyson PG, Juttner CA (1986) Cell-dose effect in circulating stem-cell autografting. Lancet 2:404–405

    Article  PubMed  CAS  Google Scholar 

  5. Richman CM, Weiner RS, Yankee RA (1976) Increase in circulating stem cells following chemotherapy in man. Blood 47:1031–1039

    PubMed  CAS  Google Scholar 

  6. To LB, Haylock DN, Simmons PJ, Juttner CA (1997) The biology and clinical uses of blood stem cells. Blood 89:2233–2258

    PubMed  CAS  Google Scholar 

  7. Sheridan WP, Begley CG, Juttner CA et al (1992) Effect of peripheral-blood progenitor cells mobilised by filgrastim (G-CSF) on platelet recovery after high-dose chemotherapy. Lancet 339:640–644

    Article  PubMed  CAS  Google Scholar 

  8. To LB, Roberts MM, Haylock DN et al (1992) Comparison of haematological recovery times and supportive care requirements of autologous recovery phase peripheral blood stem cell transplants, autologous bone marrow transplants and allogeneic bone marrow transplants. Bone Marrow Transplant 9:277–284

    PubMed  CAS  Google Scholar 

  9. Grigg AP, Roberts AW, Raunow H et al (1995) Optimizing dose and scheduling of filgrastim (granulocyte colony-stimulating factor) for mobilization and collection of peripheral blood progenitor cells in normal volunteers. Blood 86:4437–4445

    PubMed  CAS  Google Scholar 

  10. Begley CG, Basser R, Mansfield R et al (1997) Enhanced levels and enhanced clonogenic capacity of blood progenitor cells following administration of stem cell factor plus granulocyte colony-stimulating factor to humans. Blood 90:3378–3389

    PubMed  CAS  Google Scholar 

  11. Basser RL, To LB, Begley CG et al (1998) Rapid hematopoietic recovery after multicycle high-dose chemotherapy: enhancement of filgrastim-induced progenitor-cell mobilization by recombinant human stem-cell factor. J Clin Oncol 16:1899–1908

    PubMed  CAS  Google Scholar 

  12. Roberts MM, Swart BW, Simmons PJ, Basser RL, Begley CG, To LB (1999) Prolonged release and c-kit expression of haemopoietic precursor cells mobilized by stem cell factor and granulocyte colony stimulating factor. Br J Haematol 104:778–784

    Article  PubMed  CAS  Google Scholar 

  13. To LB, Bashford J, Durrant S et al (2003) Successful mobilization of peripheral blood stem cells after addition of ancestim (stem cell factor) in patients who had failed a prior mobilization with filgrastim (granulocyte colony-stimulating factor) alone or with chemotherapy plus filgrastim. Bone Marrow Transplant 31:371–378

    Article  PubMed  CAS  Google Scholar 

  14. Morrison SJ, Wright DE, Weissman IL (1997) Cyclophosphamide/granulocyte colony-stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization. Proc Nat Acad Sci U S A 94:1908–1913

    Article  CAS  Google Scholar 

  15. Ebihara Y, Xu MJ, Manabe A et al (2000) Exclusive expression of G-CSF receptor on myeloid progenitors in bone marrow CD34+ cells. Br J Haematol 109:153–161

    Article  PubMed  CAS  Google Scholar 

  16. Papayannopoulou T, Priestly GV, Nakamoto B, Zafiropoulos V, Scott LM, Harlan JM (2001) Synergistic mobilization of hemopoietic progenitor cells using concurrent beta1 and beta2 integrin blockade or beta2-deficient mice. Blood 97:1282–1288

    Article  PubMed  CAS  Google Scholar 

  17. Leavesley DI, Oliver JM, Swart BW, Berndt MC, Haylock DN, Simmons PJ (1994) Signals from platelet/endothelial cell adhesion molecule enhance the adhesive activity of the very late antigen-4 integrin of human CD34+ hemopoietic progenitor cells. J Immunol 153:4673–4683

    PubMed  CAS  Google Scholar 

  18. Watanabe T, Dave B, Heimann DG, Lethaby E, Kessinger A, Talmadge JE (1997) GM-CSF-mobilized peripheral blood CD34+ cells differ from steady-state bone marrow CD34+ cells in adhesion molecule expression. Bone Marrow Transplant 19:1175–1181

    Article  PubMed  CAS  Google Scholar 

  19. Lévesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ (2001) Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 98:1289–1297

    Article  PubMed  Google Scholar 

  20. Papayannopoulou T, Priestly GV, Nakamoto B (1998) Anti-VLA4/VCAM-1-induced mobilization requires cooperative signaling through the kit/mkit ligand pathway. Blood 91:2231–2239

    PubMed  CAS  Google Scholar 

  21. To LB, Haylock DN, Dowse T et al (1994) A comparative study of the phenotype and proliferative capacity of peripheral blood (PB) CD34+ cells mobilized by four different protocols and those of steady-phase PB and bone marrow CD34+ cells. Blood 84:2930–2939

    PubMed  CAS  Google Scholar 

  22. Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC (1997) The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med 185:111–120

    Article  PubMed  CAS  Google Scholar 

  23. Petit I, Goichberg P, Spiegel A et al (2005) Atypical PKC-zeta regulates SDF-1-mediated migration and development of human CD34+ progenitor cells. J Clin Invest 115:68–76

    Google Scholar 

  24. Pello OM, Moreno-Ortiz Mdel C, Rodríguez-Frade JM et al (2006) SOCS up-regulation mobilizes autologous stem cells through CXCR4 blockade. Blood 108:3928–3937

    Article  PubMed  CAS  Google Scholar 

  25. Hattori K, Heissig B, Tashiro K et al (2001) Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood 97:3354–3360

    Article  PubMed  CAS  Google Scholar 

  26. Semerad CL, Christopher MJ, Liu F et al (2005) G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 106:3020–3027

    Article  PubMed  CAS  Google Scholar 

  27. Christopherson KW, Cooper S, Hangoc G, Broxmeyer HE (2003) CD26 is essential for normal G-CSF-induced progenitor cell mobilization as determined by CD26−/− mice. Exp Hematol 31:1126–1134

    PubMed  CAS  Google Scholar 

  28. Paganessi LA, Walker AL, Tan LL et al (2011) Effective mobilization of hematopoietic progenitor cells in G-CSF mobilization defective CD26(−/−) mice through AMD3100-induced disruption of the CXCL12-CXCR4 axis. Exp Hematol 39:384–390

    Article  PubMed  CAS  Google Scholar 

  29. Christopher MJ, Liu F, Hilton MJ, Long F, Link DC (2009) Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization. Blood 114:1331–1339

    Article  PubMed  CAS  Google Scholar 

  30. De La Luz Sierra M, Gasperini P, McCormick PJ, Zhu J, Tosato G (2007) Transcription factor Gfi-1 induced by G-CSF is a negative regulator of CXCR4 in myeloid cells. Blood 110:2276–2285

    Article  CAS  Google Scholar 

  31. Khandanpour C, Sharif-Askari E, Vassen L et al (2010) Evidence that growth factor independence 1b regulates dormancy and peripheral blood mobilization of haematopoietic stem cells. Blood 116:5149–5161

    Article  PubMed  CAS  Google Scholar 

  32. Petit I, Szyper-Kravitz M, Nagler A et al (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3:687–694

    Article  PubMed  CAS  Google Scholar 

  33. Lévesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ (2003) Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 111:187–196

    PubMed  Google Scholar 

  34. Winkler IG, Hendy J, Coughlin P, Horvath A, Lévesque JP (2005) Serine protease inhibitors serpina1 and serpina3 are down-regulated in bone marrow during hematopoietic progenitor mobilization. J Exp Med 201:1077–1088

    Article  PubMed  CAS  Google Scholar 

  35. Janowska-Wieczorek A, Marquez LA, Nabholtz JM et al (1999) Growth factors and cytokines upregulate gelatinase expression in bone marrow CD34(+) cells and their transmigration through reconstituted basement membrane. Blood 93:3379–3390

    PubMed  CAS  Google Scholar 

  36. Vagima Y, Avigdor A, Goichberg P et al (2009) MT1-MMP and RECK are involved in human CD34+ progenitor cell retention, egress, and mobilization. J Clin Invest 119:492–503

    Article  PubMed  CAS  Google Scholar 

  37. Shirvaikar N, Marquez-Curtis LA, Shaw AR, Turner AR, Janowska-Wieczorek A (2011) MT1-MMP association with membrane lipid rafts facilitates G-CSF-induced hematopoietic stem/progenitor cell mobilization. Exp Hematol 38:823–835

    Article  CAS  Google Scholar 

  38. Lévesque JP, Liu F, Simmons PJ et al (2004) Characterization of hematopoietic progenitor mobilization in protease-deficient mice. Blood 104:65–72

    Article  PubMed  CAS  Google Scholar 

  39. Kollet O, Dar A, Shivtiel S et al (2006) Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 12:657–664

    Article  PubMed  CAS  Google Scholar 

  40. Takamatsu Y, Simmons PJ, Moore RJ, Morris HA, To LB, Lévesque JP (1998) Osteoclast-mediated bone resorption is stimulated during short-term administration of granulocyte colony-stimulating factor but is not responsible for hematopoietic progenitor cell mobilization. Blood 92:3465–3473

    PubMed  CAS  Google Scholar 

  41. Mayack SR, Wagers AJ (2008) Osteolineage niche cells initiate hematopoietic stem cell mobilization. Blood 11:519–531

    Article  CAS  Google Scholar 

  42. Méndez-Ferrer S, Michurina TV, Ferraro F et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834

    Article  PubMed  CAS  Google Scholar 

  43. Kawamori Y, Katayama Y, Asada N et al (2010) Role for vitamin D receptor in neuronal control of hematopoietic stem cell niche. Blood 116:5528–5535

    Article  PubMed  CAS  Google Scholar 

  44. Winkler IG, Barbier V, Wadley R, Zannettino A, Williams S, Lévesque JP (2010) Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct non-perfused niches. Blood 116:375–385

    Article  PubMed  CAS  Google Scholar 

  45. Bautz F, Rafii S, Kanz L, Möhle R (2000) Expression and secretion of vascular endothelial growth factor-A by cytokine-stimulated hematopoietic progenitor cells. Possible role in the hematopoietic microenvironment. Exp Hematol 28:700–706

    Article  PubMed  CAS  Google Scholar 

  46. Lévesque JP, Winkler IG, Hendy J et al (2007) Hematopoietic progenitor cell mobilization results in hypoxia with increased hypoxia-inducible transcription factor-1 alpha and vascular endothelial growth factor A in bone marrow. Stem Cells 25:1954–1965

    Article  PubMed  CAS  Google Scholar 

  47. Winkler IG, Sims NA, Pettit AR et al (2010) Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSC. Blood 116:4815–4828

    Article  PubMed  CAS  Google Scholar 

  48. Chow A, Lucas D, Hidalgo A et al (2011) Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 208:261–271

    Article  PubMed  CAS  Google Scholar 

  49. Christopher MJ, Rao M, Liu F, Woloszynek JR, Link DC (2011) Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J Exp Med 208:251–260

    Article  PubMed  CAS  Google Scholar 

  50. Jalili A, Shirvaikar N, Marquez-Curtis L et al (2010) Fifth complement cascade protein (C5) cleavage fragments disrupt the SDF-1/CXCR4 axis: further evidence that innate immunity orchestrates the mobilization of hematopoietic stem/progenitor cells. Exp Hematol 38:321–332

    Article  PubMed  CAS  Google Scholar 

  51. Ratajczak MZ, Lee H, Wysoczynski M et al (2010) Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization. Leukemia 24:976–985

    Article  PubMed  CAS  Google Scholar 

  52. Katayama Y, Battista M, Kao WM et al (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124:407–421

    Article  PubMed  CAS  Google Scholar 

  53. Méndez-Ferrer S, Battista M, Frenette PS (2010) Cooperation of beta(2)- and beta(3)-adrenergic receptors in hematopoietic progenitor cell mobilization. Ann N Y Acad Sci 1192:139–144

    Article  PubMed  CAS  Google Scholar 

  54. Jiang S, Alberich-Jorda M, Zagozdzon R et al (2011) Cannabinoid receptor 2 and its agonists mediate hematopoiesis and hamatopoietic stem and progenitor cell mobilization. Blood 117:827–838

    Article  PubMed  CAS  Google Scholar 

  55. Ryan MA, Nattamai KJ, Xing E et al (2010) Pharmacological inhibition of EGFR signaling enhances G-CSF-induced hematopoietic stem cell mobilization. Nat Med 10:1141–1146

    Article  CAS  Google Scholar 

  56. Jalili A, Shirvaikar N, Marquez-Curtis LA, Turner AR, Janowska-Wieczorek A (2010) The HGF/c-Met axis synergizes with G-CSF in the mobilization of hematopoietic stem/progenitor cells. Stem Cells Dev 8:1143–1151

    Article  CAS  Google Scholar 

  57. Tesio M, Golan K, Corso S et al (2011) Enhanced c-Met activity promotes G-CSF-induced mobilization of hematopoietic progenitor cells via ROS signaling. Blood 117:419–428

    Article  PubMed  CAS  Google Scholar 

  58. Gomes AL, Carvalho T, Serpa J, Torre C, Dias S (2010) Hypercholesterolemia promotes bone marrow cell mobilization by perturbing the SDF-1:CXCR4 axis. Blood 115:3886–3894

    Article  PubMed  CAS  Google Scholar 

  59. Tanaka Y, Yujiri T, Tanaka M, Mitani N, Tanimura A, Tanizawa Y (2009) Alteration of adipokines during peripheral blood stem cell mobilization induced by granulocyte colony-stimulating factor. J Clin Apher 24:205–208

    Article  PubMed  Google Scholar 

  60. Borneo J, Munugalavadla V, Sims EC et al (2007) Src family kinase-mediated negative regulation of hematopoietic stem cell mobilization involves both intrinsic and microenvironmental factors. Exp Hematol 35:1026–1037

    Article  PubMed  CAS  Google Scholar 

  61. Walkley CR, Shea JM, Sims NA, Purton LE, Orkin SH (2007) Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 129:1081–1095

    Article  PubMed  CAS  Google Scholar 

  62. Imbert AM, Belaaloui G, Bardin F, Tonnelle C, Lopez M, Chabannon C (2006) CD99 expressed on human mobilized peripheral blood CD34+ cells is involved in transendothelial migration. Blood 108:2578–2586

    Article  PubMed  CAS  Google Scholar 

  63. Selleri C, Ragno P, Ricci P et al (2006) The metastasis-associated 67-kDa laminin receptor is involved in G-CSF-induced hematopoietic stem cell mobilization. Blood 108:2476–2484

    Article  PubMed  CAS  Google Scholar 

  64. Gu Y, Filippi MD, Cancelas JA et al (2003) Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science 302:445–449

    Article  PubMed  CAS  Google Scholar 

  65. Cancelas JA, Lee AW, Prabhakar R, Stringer KF, Zheng Y, Williams DA (2005) Rac GTPases differentially integrate signals regulating hematopoietic stem cell localization. Nat Med 11:886–891

    Article  PubMed  CAS  Google Scholar 

  66. Engelhardt M, Bertz H, Afting M, Waller CF, Finke J (1999) High-versus standard-dose filgrastim (rhG-CSF) for mobilization of peripheral-blood progenitor cells from allogeneic donors and CD34(+) immunoselection. J Clin Oncol 17:2160–2172

    PubMed  CAS  Google Scholar 

  67. Kröger N, Renges H, Krüger W et al (2000) A randomized comparison of once versus twice daily recombinant human granulocyte colony-stimulating factor (filgrastim) for stem cell mobilization in healthy donors for allogeneic transplantation. Br J Haematol 111:761–765

    Article  PubMed  Google Scholar 

  68. Kröger N, Sonnenberg S, Cortes-Dericks L, Freiberger P, Mollnau H, Zander AR (2004) Kinetics of G-CSF and CD34+ cell mobilization after once or twice daily stimulation with rHu granulocyte-stimulating factor (lenograstim) in healthy volunteers: an intraindividual crossover study. Transfusion 44:104–110

    Article  PubMed  Google Scholar 

  69. Anderlini P, Donato M, Lauppe MJ et al (2000) A comparative study of once-daily versus twice-daily filgrastim administration for the mobilization and collection of CD34+ peripheral blood progenitor cells in normal donors. Br J Haematol 109:770–772

    Article  PubMed  CAS  Google Scholar 

  70. Dazzi C, Cariello A, Rosti G et al (2000) Is there any difference in PBPC mobilization between cyclophosphamide plus G-CSF and G-CSF alone in patients with non-Hodgkin’s Lymphoma? Leuk Lymphoma 39:301–310

    Article  PubMed  CAS  Google Scholar 

  71. Gertz MA, Kumar SK, Lacy MQ et al (2009) Comparison of high-dose CY and growth factor with growth factor alone for mobilization of stem cells for transplantation in patients with multiple myeloma. Bone Marrow Transplant 43:619–625

    Article  PubMed  CAS  Google Scholar 

  72. Gidron A, Verma A, Doyle M et al (2003) Can the stem cell mobilization technique influence CD34+ cell collection efficiency of leukapheresis procedures in patients with hematologic malignancies? Bone Marrow Transplant 35:243–246

    Article  Google Scholar 

  73. Dingli D, Nowakowski GS, Dispenzieri A et al (2006) Cyclophosphamide mobilization does not improve outcome in patients receiving stem cell transplantation for multiple myeloma. Clin Lymphoma Myeloma 6:384–388

    Article  PubMed  CAS  Google Scholar 

  74. André M, Baudoux E, Bron D et al (2003) Phase III randomized study comparing 5 or 10 microg per kg per day of filgrastim for mobilization of peripheral blood progenitor cells with chemotherapy, followed by intensification and autologous transplantation in patients with nonmyeloid malignancies. Transfusion 43:50–57

    Article  PubMed  Google Scholar 

  75. Lefrère F, Zohar S, Bresson JL et al (2006) A double-blind low dose-finding phase II study of granulocyte colony-stimulating factor combined with chemotherapy for stem cell mobilization in patients with non-Hodgkin’s lymphoma. Haematologica 91:550–553

    PubMed  Google Scholar 

  76. Bruns I, Steidl U, Fischer JC et al (2008) Pegylated granulocyte colony-stimulating factor mobilizes CD34+ cells with different stem and progenitor subsets and distinct functional properties in comparison with unconjugated granulocyte colony-stimulating factor. Haematologica 93:347–355

    Article  PubMed  CAS  Google Scholar 

  77. Kroschinsky F, Hölig K, Poppe-Thiede K et al (2005) Single-dose pegfilgrastim for the mobilization of allogeneic CD34+ peripheral blood progenitor cells in healthy family and unrelated donors. Haematologica 90:1665–1671

    PubMed  CAS  Google Scholar 

  78. Hill GR, Morris ES, Fuery M et al (2006) Allogeneic stem cell transplantation with peripheral blood stem cells mobilized by pegylated G-CSF. Biol Blood Marrow Transplant 12:603–607

    Article  PubMed  Google Scholar 

  79. Bruns I, Steidl U, Kronenwett R et al (2006) A single dose of 6 or 12 mg of pegfilgrastim for peripheral blood progenitor cell mobilization results in similar yields of CD34+ progenitors in patients with multiple myeloma. Transfusion 46:180–185

    Article  PubMed  CAS  Google Scholar 

  80. Höglund M, Smedmyr B, Bengtsson M et al (1997) Mobilization of CD34+ cells by glycosylated and nonglycosylated G-CSF in healthy volunteers – a comparative study. Eur J Haematol 59:177–183

    Article  PubMed  Google Scholar 

  81. Fischer JC, Frick M, Wassmuth R, Platz A, Punzel M, Wernet P (2005) Superior mobilisation of haematopoietic progenitor cells with glycosylated G-CSF in male but not female unrelated stem cell donors. Br J Haematol 130:740–746

    Article  PubMed  CAS  Google Scholar 

  82. Lefrère F, Bernard M, Audat F et al (1999) Comparison of lenograstim vs filgrastim administration following chemotherapy for peripheral blood stem cell (PBSC) collection: a retrospective study of 126 patients. Leuk Lymphoma 35:501–505

    Article  PubMed  Google Scholar 

  83. Sutherland HJ, Eaves CJ, Lansdorp PM, Phillips GL, Hogge DE (1994) Kinetics of committed and primitive blood progenitor mobilization after chemotherapy and growth factor treatment and their use in autotransplants. Blood 83:3808–3814

    PubMed  CAS  Google Scholar 

  84. Benjamin RJ, Linsley L, Axelrod JD et al (1995) The collection and evaluation of peripheral blood progenitor cells sufficient for repetitive cycles of high-dose chemotherapy support. Transfusion 35:837–844

    Article  PubMed  CAS  Google Scholar 

  85. To LB, Dyson PG, Branford AL, Haylock DN, Kimber RJ, Juttner CA (1987) CFU-mix are no better than CFU-GM in predicting hemopoietic reconstitutive capacity of peripheral blood stem cells collected in the very early remission phase of acute nonlymphoblastic leukemia. Exp Hematol 15:351–354

    PubMed  CAS  Google Scholar 

  86. Hepburn MD, Nagesh K, Heppleston AD, Cachia PG, Pippard MJ (2001) Timing of the appearance of multipotential and committed haemopoietic progenitors in peripheral blood after mobilization in patients with lymphoma. Clin Lab Haematol 23:119–124

    Article  PubMed  CAS  Google Scholar 

  87. Yu J, Leisenring W, Bensinger WI, Holmberg LA, Rowley SD (1999) The predictive value of white cell or CD34+ cell count in the peripheral blood for timing apheresis and maximizing yield. Transfusion 39:442–450

    Article  PubMed  CAS  Google Scholar 

  88. Armitage S, Hargreaves R, Samson D, Brennan M, Kanfer E, Navarrete C (1997) CD34 counts to predict the adequate collection of peripheral blood progenitor cells. Bone Marrow Transplant 20:587–591

    Article  PubMed  CAS  Google Scholar 

  89. Seggewiss R, Buss EC, Herrmann D, Goldschmidt H, Ho AD, Fruehauf S (2003) Kinetics of peripheral blood stem cell mobilization following G-CSF-supported chemotherapy. Stem Cells 21:568–574

    Article  PubMed  CAS  Google Scholar 

  90. Gutensohn K, Magens MM, Kuehnl P, Zeller W (2010) Increasing the economic efficacy of peripheral blood progenitor cell collections by monitoring peripheral blood CD34+ concentrations. Transfusion 50:656–662

    Article  PubMed  Google Scholar 

  91. Desikan KR, Jagannath S, Siegel D et al (1998) Collection of more hematopoietic progenitor cells with large volume leukapheresis in patients with multiple myeloma. Leuk Lymphoma 28:501–508

    PubMed  CAS  Google Scholar 

  92. Lemoli RM, Fortuna A, Motta MR et al (1996) Concomitant mobilization of plasma cells and hematopoietic progenitors into peripheral blood of multiple myeloma patients: positive selection and transplantation of enriched CD34+ cells to remove circulating tumor cells. Blood 87:1625–1634

    PubMed  CAS  Google Scholar 

  93. Lewis ID, Haylock DN, Moore S, To LB, Hughes TP (1997) Peripheral blood is a source of BCR-ABL-negative pre-progenitors in early chronic phase chronic myeloid leukemia. Leukemia 11:581–587

    Article  PubMed  CAS  Google Scholar 

  94. Lopez M, Lemoine FM, Firat H et al (1997) Bone marrow versus peripheral blood progenitor cells CD34 selection in patients with non-Hodgkin’s lymphomas: different levels of tumor cell reduction. Implications for autografting. Blood 90:2830–2838

    PubMed  CAS  Google Scholar 

  95. Dreger P, Viehmann K, von Neuhoff N et al (2000) A prospective study of positive/negative ex vivo B-cell depletion in patients with chronic lymphocytic leukemia. Exp Hematol 28:1187–1196

    Article  PubMed  CAS  Google Scholar 

  96. Abonour R, Scott KM, Kunkel LA et al (1998) Autologous transplantation of mobilized peripheral blood CD34+ cells selected by immunomagnetic procedures in patients with multiple myeloma. Bone Marrow Transplant 22:957–963

    Article  PubMed  CAS  Google Scholar 

  97. Dyson PG, Horvath N, Joshua D et al (2000) CD34+ selection of autologous peripheral blood stem cells for transplantation following sequential cycles of high-dose therapy and mobilization in multiple myeloma. Bone Marrow Transplant 25:1175–1184

    Article  PubMed  CAS  Google Scholar 

  98. Prince HM, Wall D, Rischin D et al (2002) CliniMACS CD34-selected cells to support multiple cycles of high-dose therapy. Cytotherapy 4:147–155

    Article  PubMed  CAS  Google Scholar 

  99. Tricot G, Gazitt Y, Leemhuis T et al (1998) Collection, tumor contamination, and engraftment kinetics of highly purified hematopoietic progenitor cells to support high dose therapy in multiple myeloma. Blood 91:4489–4495

    PubMed  CAS  Google Scholar 

  100. Vose JM, Bierman PJ, Lynch JC et al (2001) Transplantation of highly purified CD34 + Thy-1+ hematopoietic stem cells in patients with recurrent indolent non-Hodgkin’s lymphoma. Biol Blood Marrow Transplant 7:680–687

    Article  PubMed  CAS  Google Scholar 

  101. Gupta D, Bybee A, Cooke F et al (1999) CD34+-selected peripheral blood progenitor cell transplantation in patients with multiple myeloma: tumour cell contamination and outcome. Br J Haematol 104:166–177

    Article  PubMed  CAS  Google Scholar 

  102. Magni M, Di Nicola M, Devizzi L et al (2000) Successful in vivo purging of CD34-containing peripheral blood harvests in mantle cell and indolent lymphoma: evidence for a role of both chemotherapy and rituximab infusion. Blood 96:864–869

    PubMed  CAS  Google Scholar 

  103. Pusic I, Jiang SY, Landua S et al (2008) Impact of mobilization and remobilization strategies on achieving sufficient stem cell yields for autologous transplantation. Biol Blood Marrow Transplant 14:1045–1056

    Article  PubMed  CAS  Google Scholar 

  104. Vasu S, Leitman SF, Tisdale JF et al (2008) Donor demographic and laboratory predictors of allogeneic peripheral blood stem cell mobilization in an ethnically diverse population. Blood 112:2092–2100

    Article  PubMed  CAS  Google Scholar 

  105. Tomblyn M, Gordon LI, Singhal S et al (2005) Use of total leukocyte and platelet counts to guide stem cell apheresis in healthy allogeneic donors treated with G-CSF. Bone Marrow Transplant 36:663–666

    Article  PubMed  CAS  Google Scholar 

  106. Bensinger W, Appelbaum F, Rowley S et al (1995) Factors that influence collection and engraftment of autologous peripheral-blood stem cells. J Clin Oncol 13:2547–2555

    PubMed  CAS  Google Scholar 

  107. Perea G, Sureda A, Martino R et al (2001) Predictive factors for a successful mobilization of peripheral blood CD34+ cells in multiple myeloma. Ann Hematol 80:592–597

    Article  PubMed  CAS  Google Scholar 

  108. Mendrone A Jr, Arrais CA, Saboya R, Chamone Dde A, Dulley FL (2008) Factors affecting hematopoietic progenitor cell mobilization: an analysis of 307 patients. Transfus Apher Sci 39:187–192

    Article  PubMed  Google Scholar 

  109. Moskowitz CH, Glassman JR, Wuest D et al (1998) Factors affecting mobilization of peripheral blood progenitor cells in patients with lymphoma. Clin Cancer Res 4:311–316

    PubMed  CAS  Google Scholar 

  110. Ketterer N, Salles G, Moullet I et al (1998) Factos associated with successful mobilization of peripheral blood progenitor cells in 200 patients with lymphoid malignancies. Br J Haematol 103:235–242

    Article  PubMed  CAS  Google Scholar 

  111. Ford CD, Green W, Warenski S, Petersen FB (2004) Effect of prior chemotherapy on hematopoietic stem cell mobilization. Bone Marrow Transplant 33:901–905

    Article  PubMed  CAS  Google Scholar 

  112. Hosing C, Saliba RM, Körbling M et al (2006) High-dose rituximab does not negatively affect peripheral blood stem cell mobilization kinetics in patients with intermediate-grade non-Hodgkin’s lymphoma. Leuk Lymphoma 47:1290–1294

    Article  PubMed  CAS  Google Scholar 

  113. Popat U, Saliba R, Thandi R et al (2009) Impairment of filgrastim-induced stem cell mobilization after prior lenalidomide in patients with multiple myeloma. Biol Blood Marrow Transplant 15:718–723

    Article  PubMed  Google Scholar 

  114. Giralt S, Stadtmauer EA, Harousseau JL et al (2009) International myeloma working group (IMWG) consensus statement and guidelines regarding the current status of stem cell collection and high-dose therapy for multiple myeloma and the role of plerixafor (AMD 3100). Leukemia 23:1904–1912

    Article  PubMed  CAS  Google Scholar 

  115. Fruehauf S, Schmitt K, Veldwijk MR et al (1999) Peripheral blood progenitor cell (PBPC) counts during steady-state haemopoiesis enable the estimation of the yield of mobilized PBPC after granulocyte colony-stimulating factor supported cytotoxic chemotherapy: an update on 100 patients. Br J Haematol 105:786–794

    Article  PubMed  CAS  Google Scholar 

  116. Mijovic A, Pagliuca A, Mufti GJ (1999) The “G-CSF test”: the response to a single dose of granulocyte colony-stimulating factor predicts mobilization of hemopoietic progenitors in patients with hematologic malignancies. Exp Hematol 27:1204–1209

    Article  PubMed  CAS  Google Scholar 

  117. Lysák D, Hrabětová M, Vrzalová J et al (2011) Changes of cytokine levels during granulocyte-colony-stimulating factor stem cell mobilization in healthy donors: association with mobilization efficiency and potential predictive significance. Transfusion 51:319–327

    Article  PubMed  CAS  Google Scholar 

  118. Ozkurt ZN, Yegin ZA, Suyanı E et al (2010) Factors affecting stem cell mobilization for autologous hematopoietic stem cell transplantation. J Clin Apher 25(5):280–286

    Article  PubMed  Google Scholar 

  119. Roberts AW, Hasegawa M, Metcalf D, Foote SJ (2000) Identification of a genetic locus modulating splenomegaly induced by granulocyte colony-stimulating factor in mice. Leukemia 14:657–661

    Article  PubMed  CAS  Google Scholar 

  120. Bogunia-Kubik K, Gieryng A, Dlubek D, Lange A (2009) The CXCL12-3′A allele is associated with a higher mobilization yield of CD34 progenitors to the peripheral blood of healthy donors for allogeneic transplantation. Bone Marrow Transplant 44:273–278

    Article  PubMed  CAS  Google Scholar 

  121. Benboubker L, Watier H, Carion A et al (2001) Association between the SDF1-3′A allele and high levels of CD34(+) progenitor cells mobilized into peripheral blood in humans. Br J Haematol 113:247–250

    Article  PubMed  CAS  Google Scholar 

  122. Lie AK, Hui CH, Rawling T et al (1998) Granulocyte colony-stimulating factor (G-CSF) dose-dependent efficacy in peripheral blood stem cell mobilization in patients who had failed initial mobilization with chemotherapy and G-CSF. Bone Marrow Transplant 22:853–857

    Article  PubMed  CAS  Google Scholar 

  123. Lefrère F, Lévy V, Makke J, Audat F, Cavazzana-Calvo M, Micléa JM (2004) Successful peripheral blood stem cell harvesting with granulocyte colony-stimulating factor alone after previous mobilization failure. Haematologica 89:1532–1534

    PubMed  Google Scholar 

  124. Johnsen HE, Hansen PB, Plesner T et al (1992) Increased yield of myeloid progenitor cells in bone marrow harvested for autologous transplantation by pretreatment with recombinant human granulocyte-colony stimulating factor. Bone Marrow Transplant 10:229–234

    PubMed  CAS  Google Scholar 

  125. Lemoli RM, de Vivo A, Damiani D et al (2003) Autologous transplantation of granulocyte colony-stimulating factor-primed bone marrow is effective in supporting myeloablative chemotherapy in patients with hematologic malignancies and poor peripheral blood stem cell mobilization. Blood 102:1595–1600

    Article  PubMed  CAS  Google Scholar 

  126. Wood WA, Whitley J, Moore D et al (2011) Chemomobilization with etoposide is highly effective in patients with multiple myeloma and overcomes the effects of age and prior therapy. Biol Blood Marrow Transplant 17:141–146

    Article  PubMed  CAS  Google Scholar 

  127. Dawson MA, Schwarer AP, Muirhead JL, Bailey MJ, Bollard GM, Spencer A (2005) Successful mobilization of peripheral blood stem cells using recombinant human stem cell factor in heavily pretreated patients who have failed a previous attempt with a granulocyte colony-stimulating factor-based regimen. Bone Marrow Transplant 36:389–396

    Article  PubMed  CAS  Google Scholar 

  128. Shpall EJ, Wheeler CA, Turner SA et al (1999) A randomized phase 3 study of peripheral blood progenitor cell mobilization with stem cell factor and filgrastim in high-risk breast cancer patients. Blood 93:2491–2501

    PubMed  CAS  Google Scholar 

  129. Stiff P, Gingrich R, Luger S et al (2000) A randomized phase 2 study of PBPC mobilization by stem cell factor and filgrastim in heavily pretreated patients with Hodgkin's disease or non-Hodgkin’s lymphoma. Bone Marrow Transplant 26:471–481

    Article  PubMed  CAS  Google Scholar 

  130. Herbert KE, Morgan S, Prince HM et al (2009) Stem cell factor and high-dose twice daily filgrastim is an effective strategy for peripheral blood stem cell mobilization in patients with indolent lymphoproliferative disorders previously treated with fludarabine: results of a phase II study. Leukemia 23:305–312

    Article  PubMed  CAS  Google Scholar 

  131. Spitzer G, Adkins D, Mathews M et al (1997) Randomized comparison of G-CSF+ GM-CSF vs G-CSF alone for mobilization of peripheral blood stem cells: effects on hematopoietic recovery after high-dose chemotherapy. Bone Marrow Transplant 20:921–930

    Article  PubMed  CAS  Google Scholar 

  132. Hart C, Grassinger J, Andreesen R, Hennemann B (2009) EPO in combination with G-CSF improves mobilization effectiveness after chemotherapy with ifosfamide, epirubicin and etoposide and reduces costs during mobilization and transplantation of autologous hematopoietic progenitor cells. Bone Marrow Transplant 43:197–206

    Article  PubMed  CAS  Google Scholar 

  133. Linker C, Anderlini P, Herzig R et al (2003) Recombinant human thrombopoietin augments mobilization of peripheral blood progenitor cells for autologous transplantation. Biol Blood Marrow Transplant 9:405–413

    Article  PubMed  CAS  Google Scholar 

  134. Carlo-Stella C, Di Nicola M, Milani R et al (2004) Use of recombinant human growth hormone (rhGH) plus recombinant human granulocyte colony-stimulating factor (rhG-CSF) for the mobilization and collection of CD34+ cells in poor mobilizers. Blood 103:3287–3295

    Article  PubMed  CAS  Google Scholar 

  135. Ballen KK, Shpall EJ, Avigan D et al (2007) Phase I trial of parathyroid hormone to facilitate stem cell mobilization. Biol Blood Marrow Transplant 13:838–843

    Article  PubMed  CAS  Google Scholar 

  136. Herbert KE, Walkley CR, Winkler IG et al (2007) Granulocyte colony-stimulating factor and an RARalpha specific agonist, VTP195183, synergize to enhance the mobilization of hematopoietic progenitor cells. Transplantation 83:375–384

    Article  PubMed  CAS  Google Scholar 

  137. Donahue RE, Jin P, Bonifacino AC et al (2009) Plerixafor (AMD3100) and granulocyte colony-stimulating factor (G-CSF) mobilize different CD34+ cell populations based on global gene and microRNA expression signatures. Blood 114:2530–2541

    Article  PubMed  CAS  Google Scholar 

  138. Larochelle A, Krouse A, Metzger M et al (2006) AMD3100 mobilizes hematopoietic stem cells with long-term repopulating capacity in nonhuman primates. Blood 107:3772–3778

    Article  PubMed  CAS  Google Scholar 

  139. Taubert I, Saffrich R, Zepeda-Moreno A et al (2011) Characterization of hematopoietic stem cell subsets from patients with multiple myeloma after mobilization with plerixafor. Cytotherapy 13:459–466

    Article  PubMed  CAS  Google Scholar 

  140. DiPersio JF, Stadtmauer EA, Nademanee A et al (2009) Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood 113:5720–5726

    PubMed  CAS  Google Scholar 

  141. DiPersio JF, Micallef IN, Stiff PJ et al (2009) Phase III prospective randomized double-blind placebo-controlled trial of plerixafor plus granulocyte colony-stimulating factor compared with placebo plus granulocyte colony-stimulating factor for autologous stem-cell mobilization and transplantation for patients with non-Hodgkin’s lymphoma. J Clin Oncol 27:4767–4773

    Article  PubMed  CAS  Google Scholar 

  142. DiPersio JF, Micallef IN, Stiff PJ et al (2009) Successful stem cell remobilization using plerixafor (mozobil) plus granulocyte colony-stimulating factor in patients with non-hodgkin lymphoma: results from the plerixafor NHL phase 3 study rescue protocol. Biol Blood Marrow Transplant 15:1578–1586

    Article  PubMed  Google Scholar 

  143. Micallef IN, Ho AD, Klein LM, Marulkar S, Gandhi PJ, McSweeney PA (2011) Plerixafor (Mozobil) for stem cell mobilization in patients with multiple myeloma previously treated with lenalidomide. Bone Marrow Transplant 46:350–355

    Article  PubMed  CAS  Google Scholar 

  144. Basak GW, Knopinska-Posluszny W et al (2010) Hematopoietic stem cell mobilization with the reversible CXCR4 receptor inhibitor plerixafor (AMD3100) – Polish compassionate use experience. Ann Hematol 90:557–568

    Article  PubMed  CAS  Google Scholar 

  145. Weaver CH, Hazelton B, Birch R et al (1995) An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy. Blood 86:3961–3969

    PubMed  CAS  Google Scholar 

  146. Stiff PJ, Micallef I, Nademanee AP et al (2011) Transplanted CD34(+) cell dose is associated with long-term platelet count recovery following autologous peripheral blood stem cell transplant in patients with non-Hodgkin's lymphoma or multiple myeloma. Biol Blood Marrow Transplant 17(8):1146–1153

    Article  PubMed  CAS  Google Scholar 

  147. Theilgaard-Mönch K, Raaschou-Jensen K, Andersen H et al (1999) Single leukapheresis products collected from healthy donors after the administration of granulocyte colony-stimulating factor contain ten-fold higher numbers of long-term reconstituting hematopoietic progenitor cells than conventional bone marrow allograft. Bone Marrow Transplant 23:243–249

    Article  PubMed  Google Scholar 

  148. Theilgaard-Mönch K, Raaschou-Jensen K, Schjødt K et al (2003) Pluripotent and myeloid-committed CD34+ subsets in hematopoietic stem cell allografts. Bone Marrow Transplant 32:1125–1133

    Article  PubMed  Google Scholar 

  149. Dercksen MW, Gerritsen WR, Rodenhuis S et al (1995) Expression of adhesion molecules on CD34+ cells: CD34+ L-selectin+ cells predict a rapid platelet recovery after peripheral blood stem cell transplantation. Blood 85:3313–3319

    PubMed  CAS  Google Scholar 

  150. Pratt G, Rawstron AC, English AE et al (2001) Analysis of CD34+ cell subsets in stem cell harvests can more reliably predict rapidity and durability of engraftment than total CD34+ cell dose, but steady state levels do not correlate with bone marrow reserve. Br J Haematol 114:937–943

    Article  PubMed  CAS  Google Scholar 

  151. Pecora AL, Preti RA, Gleim GW et al (1998) CD34+ CD33- cells influence days to engraftment and transfusion requirements in autologous blood stem-cell recipients. J Clin Oncol 16:2093–2104

    PubMed  CAS  Google Scholar 

  152. Prabhash K, Khattry N, Bakshi A et al (2010) CD26 expression in donor stem cell harvest and its correlation with engraftment in human haematopoietic stem cell transplantation: potential predictor of early engraftment. Ann Oncol 21:582–588

    Article  PubMed  CAS  Google Scholar 

  153. Spencer A, Jackson J, Baulch-Brown C (2001) Enumeration of bone marrow ‘homing’ haemopoietic stem cells from G-CSF-mobilised normal donors and influence on engraftment following allogeneic transplantation. Bone Marrow Transplant 28:1019–1022

    Article  PubMed  CAS  Google Scholar 

  154. Haylock DN, To LB, Dowse TL, Juttner CA, Simmons PJ (1992) Ex vivo expansion and maturation of peripheral blood CD34+ cells into the myeloid lineage. Blood 80:1405–1412

    PubMed  CAS  Google Scholar 

  155. Makino S, Haylock DN, Dowse T et al (1997) Ex vivo culture of peripheral blood CD34+ cells: effects of hematopoietic growth factors on production of neutrophilic precursors. J Hematother 6:475–489

    PubMed  CAS  Google Scholar 

  156. Shapiro F, Yao TJ, Raptis G, Reich L, Norton L, Moore MA (1994) Optimization of conditions for ex vivo expansion of CD34+ cells from patients with stage IV breast cancer. Blood 84:3567–3574

    PubMed  CAS  Google Scholar 

  157. Lazzari L, Henschler R, Lecchi L, Rebulla P, Mertelsmann R, Sirchia G (2000) Interleukin-6 and interleukin-11 act synergistically with thrombopoietin and stem cell factor to modulate ex vivo expansion of human CD41+ and CD61+ megakaryocytic cells. Haematologica 85:25–30

    PubMed  CAS  Google Scholar 

  158. Boiron JM, Dazey B, Cailliot C et al (2006) Large-scale expansion and transplantation of CD34(+) hematopoietic cells: in vitro and in vivo confirmation of neutropenia abrogation related to the expansion process without impairment of the long-term engraftment capacity. Transfusion 46:1934–1942

    Article  PubMed  Google Scholar 

  159. Watts KL, Delaney C, Humphries RK, Bernstein ID, Kiem HP (2010) Combination of HOXB4 and Delta-1 ligand improves expansion of cord blood cells. Blood 116:5859–5866

    Article  PubMed  CAS  Google Scholar 

  160. Schmitz N, Beksac M, Bacigalupo A et al (2005) Filgrastim-mobilized peripheral blood progenitor cells versus bone marrow transplantation for treating leukemia: 3-year results from the EBMT randomized trial. Haematologica 90:643–648

    PubMed  CAS  Google Scholar 

  161. Dey BR, Shaffer J, Yee AJ et al (2007) Comparison of outcomes after transplantation of peripheral blood stem cells versus bone marrow following an identical nonmyeloablative conditioning regimen. Bone Marrow Transplant 40(40):19–27

    Article  PubMed  CAS  Google Scholar 

  162. Mohty M, Bilger K, Jourdan E et al (2003) Higher doses of CD34+ peripheral blood stem cells are associated with increased mortality from chronic graft-versus-host disease after allogeneic HLA-identical sibling transplantation. Leukemia 17:869–875

    Article  PubMed  CAS  Google Scholar 

  163. Joshi SS, Lynch JC, Pavletic SZ et al (2001) Decreased immune functions of blood cells following mobilization with granulocyte colony-stimulating factor: association with donor characteristics. Blood 98:1963–1970

    Article  PubMed  CAS  Google Scholar 

  164. Miller JS, Prosper F, McCullar V (1997) Natural killer (NK) cells are functionally abnormal and NK cell progenitors are diminished in granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cell collections. Blood 90:3098–3105

    PubMed  CAS  Google Scholar 

  165. Rondelli D, Raspadori D, Anasetti C et al (1998) Alloantigen presenting capacity, T cell alloreactivity and NK function of G-CSF-mobilized peripheral blood cells. Bone Marrow Transplant 22:631–637

    Article  PubMed  CAS  Google Scholar 

  166. Yamasaki S, Henzan H, Ohno Y et al (2003) Influence of transplanted dose of CD56+ cells on development of graft-versus-host disease in patients receiving G-CSF-mobilized peripheral blood progenitor cells from HLA-identical sibling donors. Bone Marrow Transplant 32:505–510

    Article  PubMed  CAS  Google Scholar 

  167. Arpinati M, Green CL, Heimfeld S, Heuser JE, Anasetti C (2000) Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood 95:2484–2490

    PubMed  CAS  Google Scholar 

  168. Sun LX, Ren HY, Shi YJ, Wang LH, Qiu ZX (2009) Recombinant human granulocyte colony-stimulating factor significantly decreases the expression of CXCR3 and CCR6 on T cells and preferentially induces T helper cells to a T helper 17 phenotype in peripheral blood harvests. Biol Blood Marrow Transplant 15:835–843

    Article  PubMed  CAS  Google Scholar 

  169. Hill GR, Olver SD, Kuns RD et al (2010) Stem cell mobilization with G-CSF induces Type-17 differentiation and promotes scleroderma. Blood 116(5):819–828

    Article  PubMed  CAS  Google Scholar 

  170. Hill GR, Kuns RD, Raffelt NC et al (2010) SOCS3 regulates graft-versus-host disease. Blood 116:287–296

    Article  PubMed  CAS  Google Scholar 

  171. Group SCTC (2005) Allogeneic peripheral blood stem-cell compared with bone marrow transplantation in the management of hematologic malignancies: an individual patient data meta-analysis of nine randomized trials. J Clin Oncol 23:5074–5087

    Article  Google Scholar 

  172. Morris ES, MacDonald KP, Hill GR (2006) Stem cell mobilization with G-CSF analogs: a rational approach to separate GVHD and GVL? Blood 107:3430–3455

    Article  PubMed  CAS  Google Scholar 

  173. Hiwase DK, Hiwase S, Bailey M, Bollard G, Schwarer AP (2008) The role of stem cell mobilization regimen on lymphocyte collection yield in patients with multiple myeloma. Cytotherapy 10:507–517

    Article  PubMed  CAS  Google Scholar 

  174. LB, Levesque J-P, Herbert KE (2011) How I treat patients who mobilize haematopoietic stem cells poorly. Blood. Published ahead of print August 10, 2011, doi:10.1182/blood-2011-06-318220

    Google Scholar 

  175. Herbert KE, Levesque J-P, Mills AK, Gottlieb DJ, Cooney J, Szer J, Rasko J, To LB (2011) How we mobilize haematopoietic stem cells. Internal Medicine Journal 41:588–594

    Google Scholar 

  176. To LB, Levesque J-P, Herbert KE, Winkler I, Bendall L, Hiwase D, Antonenas V, Rice A, Gottlieb D, Mills A, Rasko J, Larsen S, Beligaswatte A, Nilsson S, Cooney J, Cambareri T, Lewis I. Mobilization strategy for normal and malignant cells. (2011) Pathology. In press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luen Bik To .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Beligaswatte, A., Lewis, I., To, L.B. (2012). rHuG-CSF in Peripheral Blood Progenitor Cell Transplantation. In: Molineux, G., Foote, M., Arvedson, T. (eds) Twenty Years of G-CSF. Milestones in Drug Therapy. Springer, Basel. https://doi.org/10.1007/978-3-0348-0218-5_14

Download citation

Publish with us

Policies and ethics