Skip to main content

Hypotheses and Concepts

  • Chapter
  • First Online:
Urban Geology

Abstract

Within this chapter, we present and discuss several hypotheses and some concepts which we consider as important for urban geology. The first section deals with adaptive subsurface and groundwater resource management in urban areas with a focus on the definition of “system and risk profiles.” The second section discusses the importance and role of “flow across boundaries.” The third section describes an approach for the assessment of “vulnerability” of urban groundwater resources and includes a discussion on how to define “quality control systems.” In the last section, we discuss impacts of anthropogenic and climate change to quantitative and qualitative aspects of groundwater resources in the city Basel.

The taken measures that are addressed in the concepts are directed towards a better understanding of urban subsurface systems in order to improve the base for future decisions. They can be used as an asset framework or tool for subsurface planning in the evaluation of individual projects as well as for optimization of subsurface resource management in urban areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Affolter A, Gantenbein-Demarchi C, Huggenberger P, Lüthi T, Krapf T, Zoller R (2009) Verfahrensrichtlinie Trinkwasser (in Vernehmlassung)

    Google Scholar 

  • Affolter A, Huggenberger P, Scheidler S, Epting J (2010) Adaptives Grundwassermanagement in urbanen Gebieten – Ansätze zur konkreten Umsetzung einer nachhaltigen Wasserressourcenbewirtschaftung. Grundwasser. doi:10.1007/s00767-010-0145-6

  • Aller L, Bennett T, Lehr JH, Petty RJ (1987) DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeological settings. U. S. Environmental Protection Agency, Oklahoma

    Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (2008) Climate change and water. Technical paper of the Intergovernmental Panel on Climate Change. Technical report, IPCC Secretariat, Geneva

    Google Scholar 

  • Braga A, Horst M, Traver AG (2007) Temperature effects on the infiltration rate through an infiltration basin BMP. J Irrig Drain Eng 133(6):593–601

    Article  Google Scholar 

  • Brouyère S (2004) A quantitative point of view of the concept of vulnerability. In: Zwahlen F (ed) Vulnerability and risk mapping for the protection of carbonate (Karst) Aquifers. COST action 620, Final report, European Commission, Brüssel

    Google Scholar 

  • Butscher C, Huggenberger P (2007) Implications for karst hydrology from 3D geological modeling using the aquifer base gradient approach. J Hydrol 342:184–198

    Article  Google Scholar 

  • Butscher C, Huggenberger P (2008) Intrinsic vulnerability assessment in karst areas: a numerical modeling approach. Water Resour Res 44:W03408

    Article  Google Scholar 

  • Butscher C, Huggenberger P (2009) Modeling the temporal variability of karst ground water vulnerability, with implications for climate change. Environ Sci Technol 43(6):1665–1669

    Article  Google Scholar 

  • Conversi A, Umani SF, Peluso T, Molinero JC, Santojanni A, Edwards M (2010) The Mediterranean Sea regime shift at the end of the 1980s, and intriguing parallelisms with other European basins. PLoS ONE 5(5):e10633. doi:10.1371/journal.pone.0010633

    Article  Google Scholar 

  • Doerfliger N, Jeannin P-Y, Zwahlen F (1999) Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ Geol 39(2):165–176

    Article  Google Scholar 

  • Dyck S, Peschke G (1995) Grundlagen der Hydrologie, Berlin, pp 536

    Google Scholar 

  • Eiswirth M, Hötzl H, Cronin A, Morris B, Veselič M, Bufler R, Burn S, Dillon P (2003) Assessing and improving sustainability of urban water resources and systems. RMZ Mater Geoenviron 50:117–120

    Google Scholar 

  • Epting J, Huggenberger P, Rauber M (2008) Integrated methods and scenario development in urban groundwater management, and protection during tunnel road construction; a case study of urban hydrogeology in the city of Basel, Switzerland. Hydrogeol J 16:575–591

    Article  Google Scholar 

  • EU (2000) Richtlinie 2000 /60 /EG des Europäischen Parlaments und des Rates vom 23. Oktober 2000 zur Schaffung eines Ordnungsrahmens für Maßnahmen der Gemeinschaft im Bereich der Wasserpolitik

    Google Scholar 

  • Fatta D, Naoum D, Loizidou M (2002) Integrated environmental monitoring and simulation system for use as a management decision support tool in urban areas. J Environ Manage 64:333–343

    Article  Google Scholar 

  • Fogg G, LaBolle E, Weissmann G (1999) Groundwater vulnerability assessment: hydrogeologic perspective and example from Salinas Valley, California. In: Corwin D, Loague K, Ellsworth T (eds) Assessment of non-point source pollution in the Vadose zone, Geophysical Monograph No 108. American Geophysical Union, pp 45–61

    Google Scholar 

  • Gerke HH, Germann P, Nieber J (2010) Preferential and unstable flow: from the pore to the catchment scale. Vadose Zone J 9:207–212. doi:10.2136/vzj2010.0059

    Article  Google Scholar 

  • Hari RE, Livingstone DM, Siber R, Burkhardt-Holm P, Guettinger H (2006) Consequences of climatic change for water temperature and brown trout populations in Alpine rivers and streams. Glob Chang Biol 12(1):10–26

    Article  Google Scholar 

  • Hötzl H (1996) Grundwasserschutz in Karstgebieten, Grundwasser 1/96 (1996):5–11

    Google Scholar 

  • INTERREG III A-Projekt MoNit (2006) “Modellierung der Grundwasserbelastung durch Nitrat im Oberrheingraben” Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg

    Google Scholar 

  • Jeannin P-Y, Cornaton F, Zwahlen F, Perrochet P (2001) VULK: a tool for intrinsic vulnerability assessment and validation. In: 7th Conference on limestone hydrology and fissured media, Besanc, 20–22 Sept 2001. Sci Technol Environ Mem HS 13:185–190

    Google Scholar 

  • Liedl R, Sauter M, Hückinghaus D, Clemens T, Teutsch G (2003) Simulation of the development of karst aquifers using a coupled continuum pipe flow model. Water Resour Res 39(3):1057. doi:10.1029/2001WR001206

    Article  Google Scholar 

  • National Research Council (1993) Groundwater vulnerability assessment, contamination potential under conditions of uncertainty. Committee on Techniques for Assessing Ground Water Vulnerability, Water Science and Technology Board, Commission on Geosciences Environment and Resources, National Academy Press, Washington DC, pp 224

    Google Scholar 

  • National Research Council (2004) Adaptive management for water resources project planning, 138 S. National Academies Press, Washington

    Google Scholar 

  • OcCC/ProClim (ed) (2007) Climate change and Switzerland 2050. Expected impacts on environment, society and economy. OcCC/ProClim, Bern

    Google Scholar 

  • Pahl-Wostl C, Möltgen J, Sendzimir J, Kabat P (2005) New methods for adaptive water management under uncertainty–the NeWater project. In: Paper accepted for the EWRA Conference 2005, Menton, France, September 2005

    Google Scholar 

  • Pronk M, Goldscheider N, Zopfi J (2007) Particle-size Distribution As Indicator for Fecal Bacteria Contamination of Drinking Water from Karst Springs. Environmental Science & Technology 41(24):8400–8405

    Google Scholar 

  • Rauch W (2009) Anwendung des HACCP Konzepts (Hazard Analysis and Critical Control Points) zum Schutz eines Trinkwasserbrunnens. GWF 07–08

    Google Scholar 

  • Schirmer M, Strauch G, Schirmer K, Reinstorf F (2007) Urbane Hydrogeologie – Herausforderungen für Forschung und Praxis.-. Grundwasser. doi:10.1007/s00767-007-0034-9

  • Stanford JA, Ward JV (1993) An ecosystem perspective of alluvial rivers: connectivity and the hyporheic zone. J N Am Benthol Soc 12(1):48–60

    Article  Google Scholar 

  • von Gunten HR, Karametaxas G, Krähenbühl U, Kuslys M, Giovanoli R, Hoehn E, Kei R (1991) Seasonal biogeochemical cycles in riverborne groundwater. Geochim Cosmochim Acta 55(12):3597–3609

    Article  Google Scholar 

  • Vrba J, Zoporozec A (1994) Guidebook on mapping groundwater vulnerability. In: Vrba J, Zoporozec A (eds) International contributions to hydrogeology (IAH), vol 16. IAH, Hannover, p 131

    Google Scholar 

  • Water for health (2010) who guidelines for drinking-water quality. http://www.who.int/water_sanitation_health/dwq/guidelines/en/

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Huggenberger , Peter Huggenberger , Jannis Epting , Christoph Butscher or Jannis Epting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this chapter

Cite this chapter

Huggenberger, P., Epting, J., Affolter, A., Butscher, C., Scheidler, S., Rota, J.S. (2011). Hypotheses and Concepts. In: Huggenberger, P., Epting, J. (eds) Urban Geology. Springer, Basel. https://doi.org/10.1007/978-3-0348-0185-0_3

Download citation

Publish with us

Policies and ethics