Skip to main content

Proteinase-Activated Receptors and Arthritis

  • Chapter
  • First Online:
Proteases and Their Receptors in Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

  • 791 Accesses

Abstract

The novel family of proteinase-activated receptors (PARs) is activated through proteolytic cleavage by serine proteinases. This family of G protein-coupled receptors and their activating enzymes are found widely throughout the body. It has been known for some time that during arthritic conditions, high levels of serine proteinases are released from joint tissue and contribute to joint degradation. Expression of PARs is also enhanced in arthritic joints and act to mediate the intracellular signalling of the serine proteinases, leading to various inflammatory and painful effects. This chapter summarises what is known so far on all four of the currently known PARs with respect to their links with arthritis and discusses how these receptors may represent novel targets for the development of new arthritic treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Helmick CG, Felson DT, Lawrence RC, Gabriel S, Hirsch R, Kwoh CK, Liang MH, Kremers HM, Mayes MD, Merkel PA et al (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States Part I. Arthritis Rheum 58:15–25

    PubMed  Google Scholar 

  2. Sprangers MA, de Regt EB, Andries F, van Agt HM, Bijl RV, de Boer JB, Foets M, Hoeymans N, Jacobs AE, Kempen GI et al (2000) Which chronic conditions are associated with better or poorer quality of life? J Clin Epidemiol 53:895–907

    PubMed  CAS  Google Scholar 

  3. Naz SM, Symmons DP (2007) Mortality in established rheumatoid arthritis. Best Pract Res Clin Rheumatol 21:871–883

    PubMed  Google Scholar 

  4. Brooks PM (2006) The burden of musculoskeletal disease–a global perspective. Clin Rheumatol 25:778–781

    PubMed  Google Scholar 

  5. Burton W, Morrison A, Maclean R, Ruderman E (2006) Systematic review of studies of productivity loss due to rheumatoid arthritis. Occup Med (Lond) 56:18–27

    Google Scholar 

  6. Barrett EM, Scott DG, Wiles NJ, Symmons DP (2000) The impact of rheumatoid arthritis on employment status in the early years of disease: a UK community-based study. Rheumatology (Oxford) 39:1403–1409

    CAS  Google Scholar 

  7. Reginster JY (2002) The prevalence and burden of arthritis. Rheumatology (Oxford) 41(Supp 1):3–6

    Google Scholar 

  8. Badley EM (1995) The economic burden of musculoskeletal disorders in Canada is similar to that for cancer, and may be higher. J Rheumatol 22:204–206

    PubMed  CAS  Google Scholar 

  9. Buckwalter JA, Saltzman C, Brown T (2004) The impact of osteoarthritis: implications for research. Clin Orthop Relat Res:S6–S15

    Google Scholar 

  10. Birnbaum H, Pike C, Kaufman R, Maynchenko M, Kidolezi Y, Cifaldi M (2010) Societal cost of rheumatoid arthritis patients in the US. Curr Med Res Opin 26:77–90

    PubMed  Google Scholar 

  11. Hootman JM, Helmick CG (2006) Projections of US prevalence of arthritis and associated activity limitations. Arthritis Rheum 54:226–229

    PubMed  Google Scholar 

  12. Woolf AD, Pfleger B (2003) Burden of major musculoskeletal conditions. Bull World Health Organ 81:646–656

    PubMed  Google Scholar 

  13. Schoels M, Wong J, Scott DL, Zink A, Richards P, Landewe R, Smolen JS, Aletaha D (2010) Economic aspects of treatment options in rheumatoid arthritis: a systematic literature review informing the EULAR recommendations for the management of rheumatoid arthritis. Ann Rheum Dis 69:995–1003

    PubMed  Google Scholar 

  14. Pugner KM, Scott DI, Holmes JW, Hieke K (2000) The costs of rheumatoid arthritis: An international long-term view. Semin Arthritis Rheum 29:305–320

    PubMed  CAS  Google Scholar 

  15. March L, Lapsley H (2001) What are the costs to society and the potential benefits from the effective management of early rheumatoid arthritis? Best Pract Res Clin Rheumatol 15:171–185

    PubMed  CAS  Google Scholar 

  16. Sacre SM, Andreakos E, Taylor P, Feldmann M, Foxwell BM (2005) Molecular therapeutic targets in rheumatoid arthritis. Expert Rev Mol Med 7:1–20

    PubMed  Google Scholar 

  17. Silman AJ (2002) The changing face of rheumatoid arthritis: why the decline in incidence? Arthritis Rheum 46:579–581

    PubMed  Google Scholar 

  18. Myasoedova E, Crowson CS, Kremers HM, Therneau TM, Gabriel SE (2010) Is the incidence of rheumatoid arthritis rising? Results from Olmsted county, Minnesota, 1955–2007. Arthritis Rheum 62:1576–1582

    PubMed  Google Scholar 

  19. Ignatavicius DD (2001) Rheumatoid arthritis and the older adult. Geriatr Nurs 22:139–142

    PubMed  CAS  Google Scholar 

  20. Wolfe MM, Lichtenstein DR, Singh G (1999) Gastrointestinal toxicity of nonsteroidal antiinflammatory drugs. N Engl J Med 340:1888–1899

    PubMed  CAS  Google Scholar 

  21. Chikanza IC, Kozaci DL (2004) Corticosteroid resistance in rheumatoid arthritis: molecular and cellular perspectives. Rheumatology (Oxford) 43:1337–1345

    CAS  Google Scholar 

  22. Rindfleisch JA, Muller D (2005) Diagnosis and management of rheumatoid arthritis. Am Fam Physician 72:1037–1047

    PubMed  Google Scholar 

  23. Williams RO, Feldmann M, Maini RN (1992) Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proc Natl Acad Sci USA 89:9784–9788

    PubMed  CAS  Google Scholar 

  24. Breedveld FC, Kalden JR (2004) Appropriate and effective management of rheumatoid arthritis. Ann Rheum Dis 63:627–633

    PubMed  CAS  Google Scholar 

  25. Rankin EC, Choy EH, Kassimos D, Kingsley GH, Sopwith AM, Isenberg DA, Panayi GS (1995) The therapeutic effects of an engineered human anti-tumour necrosis factor alpha antibody (CDP571) in rheumatoid arthritis. Br J Rheumatol 34:334–342

    PubMed  CAS  Google Scholar 

  26. Padyukov L, Lampa J, Heimburger M, Ernestam S, Cederholm T, Lundkvist I, Andersson P, Hermansson Y, Harju A, Klareskog L et al (2003) Genetic markers for the efficacy of tumour necrosis factor blocking therapy in rheumatoid arthritis. Ann Rheum Dis 62:526–529

    PubMed  CAS  Google Scholar 

  27. van der Bijl AE, Goekoop-Ruiterman YP, de Vries-Bouwstra JK, Ten WS, Han KH, van Krugten MV, Allaart CF, Breedveld FC, Dijkmans BA (2007) Infliximab and methotrexate as induction therapy in patients with early rheumatoid arthritis. Arthritis Rheum 56:2129–2134

    PubMed  Google Scholar 

  28. Goldring MB, Goldring SR (2007) Osteoarthritis. J Cell Physiol 213:626–634

    PubMed  CAS  Google Scholar 

  29. Hunter DJ, McDougall JJ, Keefe FJ (2009) The symptoms of osteoarthritis and the genesis of pain. Med Clin North Am 93:83–100, xi

    PubMed  Google Scholar 

  30. Goldring MB, Goldring SR (2010) Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci 1192:230–237

    PubMed  CAS  Google Scholar 

  31. Altman RD (2010) Early management of osteoarthritis. Am J Manag Care 16 Suppl Management:S41–S47

    Google Scholar 

  32. Ram M, Sherer Y, Shoenfeld Y (2006) Matrix metalloproteinase-9 and autoimmune diseases. J Clin Immunol 26:299–307

    PubMed  CAS  Google Scholar 

  33. Eck SM, Blackburn JS, Schmucker AC, Burrage PS, Brinckerhoff CE (2009) Matrix metalloproteinase and G protein coupled receptors: co-conspirators in the pathogenesis of autoimmune disease and cancer. J Autoimmun 33:214–221

    PubMed  CAS  Google Scholar 

  34. Hannan MT, Felson DT, Pincus T (2000) Analysis of the discordance between radiographic changes and knee pain in osteoarthritis of the knee. J Rheumatol 27:1513–1517

    PubMed  CAS  Google Scholar 

  35. McDougall JJ, Andruski B, Schuelert N, Hallgrimsson B, Matyas JR (2009) Unravelling the relationship between age, nociception and joint destruction in naturally occurring osteoarthritis of Dunkin Hartley guinea pigs. Pain 141:222–232

    PubMed  Google Scholar 

  36. Reinharth D (2005) Capsaicin cream unpopular with patients. Arch Intern Med 165:702

    PubMed  Google Scholar 

  37. Chou MM, Vergnolle N, McDougall JJ, Wallace JL, Marty S, Teskey V, Buret AG (2005) Effects of chondroitin and glucosamine sulfate in a dietary bar formulation on inflammation, interleukin-1beta, matrix metalloprotease-9, and cartilage damage in arthritis. Exp Biol Med 230:255–262

    CAS  Google Scholar 

  38. Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, Arden N, Bierma-Zeinstra S, Brandt KD, Croft P, Doherty M et al (2008) OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthr Cartil 16:137–162

    PubMed  CAS  Google Scholar 

  39. Zhang W, Nuki G, Moskowitz RW, Abramson S, Altman RD, Arden NK, Bierma-Zeinstra S, Brandt KD, Croft P, Doherty M et al (2009) OARSI recommendations for the management of hip and knee osteoarthritis: part III: Changes in evidence following systematic cumulative update of research published through. Osteoarthr Cartil 18:476–499

    Google Scholar 

  40. Lavery JP, Lisse JR (1994) Preliminary study of the tryptase levels in the synovial fluid of patients with inflammatory arthritis. Ann Allergy 72:425–427

    PubMed  CAS  Google Scholar 

  41. Nakano S, Ikata T, Kinoshita I, Kanematsu J, Yasuoka S (1999) Characteristics of the protease activity in synovial fluid from patients with rheumatoid arthritis and osteoarthritis. Clin Exp Rheumatol 17:161–170

    PubMed  CAS  Google Scholar 

  42. So AK, Varisco PA, Kemkes-Matthes B, Herkenne-Morard C, Chobaz-Peclat V, Gerster JC, Busso N (2003) Arthritis is linked to local and systemic activation of coagulation and fibrinolysis pathways. J Thromb Haemost 1:2510–2515

    PubMed  CAS  Google Scholar 

  43. Marty I, Peclat V, Kirdaite G, Salvi R, So A, Busso N (2001) Amelioration of collagen-induced arthritis by thrombin inhibition. J Clin Invest 107:631–640

    PubMed  CAS  Google Scholar 

  44. Varisco PA, Peclat V, Bischof-Delaloye A, So A, Busso N (2000) Effect of thrombin inhibition on synovial inflammation in antigen induced arthritis. Ann Rheum Dis 59:781–787

    PubMed  CAS  Google Scholar 

  45. Sawamukai N, Yukawa S, Saito K, Nakayamada S, Kambayashi T, Tanaka Y (2010) Mast cell-derived tryptase inhibits apoptosis of human rheumatoid synovial fibroblasts via rho-mediated signaling. Arthritis Rheum 62:952–959

    PubMed  CAS  Google Scholar 

  46. Uehara A, Sugawara S, Muramoto K, Takada H (2002) Activation of human oral epithelial cells by neutrophil proteinase 3 through protease-activated receptor-2. J Immunol 169:4594–4603

    PubMed  CAS  Google Scholar 

  47. Matsumoto T, Kaneko T, Seto M, Wada H, Kobayashi T, Nakatani K, Tonomura H, Tono Y, Ohyabu M, Nobori T et al (2008) The membrane proteinase 3 expression on neutrophils was downregulated after treatment with infliximab in patients with rheumatoid arthritis. Clin Appl Thromb Hemost 14:186–192

    PubMed  CAS  Google Scholar 

  48. Milner JM, Patel A, Davidson RK, Swingler TE, Desilets A, Young DA, Kelso EB, Donell ST, Cawston TE, Clark IM et al (2010) Matriptase is a novel initiator of cartilage matrix degradation in osteoarthritis. Arthritis Rheum 62:1955–1966

    PubMed  CAS  Google Scholar 

  49. Miyata J, Tani K, Sato K, Otsuka S, Urata T, Lkhagvaa B, Furukawa C, Sano N, Sone S (2007) Cathepsin G: the significance in rheumatoid arthritis as a monocyte chemoattractant. Rheumatol Int 27:375–382

    PubMed  CAS  Google Scholar 

  50. Ramachandran R, Hollenberg MD (2008) Proteinases and signalling: pathophysiological and therapeutic implications via PARs and more. Br J Pharmacol 153(Suppl 1):S263–S282

    PubMed  CAS  Google Scholar 

  51. Busso N, Peclat V, So A, Sappino AP (1997) Plasminogen activation in synovial tissues: differences between normal, osteoarthritis, and rheumatoid arthritis joints. Ann Rheum Dis 56:550–557

    PubMed  CAS  Google Scholar 

  52. Carmassi F, de Negri F, Morale M, Song KY, Chung SI (1996) Fibrin degradation in the synovial fluid of rheumatoid arthritis patients: a model for extravascular fibrinolysis. Semin Thromb Hemost 22:489–496

    PubMed  CAS  Google Scholar 

  53. Busso N, Peclat V, Van Ness K, Kolodziesczyk E, Degen J, Bugge T, So A (1998) Exacerbation of antigen-induced arthritis in urokinase-deficient mice. J Clin Invest 102:41–50

    PubMed  CAS  Google Scholar 

  54. Camerer E, Kataoka H, Kahn M, Lease K, Coughlin SR (2002) Genetic evidence that protease-activated receptors mediate factor Xa signaling in endothelial cells. J Biol Chem 277:16081–16087

    PubMed  CAS  Google Scholar 

  55. Busso N, Chobaz-Peclat V, Hamilton J, Spee P, Wagtmann N, So A (2008) Essential role of platelet activation via PAR-4 in tissue factor-initiated inflammation. Arthritis Res Ther 10:R42

    PubMed  Google Scholar 

  56. Trudel G, Uhthoff HK, Laneuville O (2005) Prothrombin gene expression in articular cartilage with a putative role in cartilage degeneration secondary to joint immobility. J Rheumatol 32:1547–1555

    PubMed  CAS  Google Scholar 

  57. Shin H, Nakajima T, Kitajima I, Shigeta K, Abeyama K, Imamura T, Okano T, Kawahara K, Nakamura T, Maruyama I (1995) Thrombin receptor-mediated synovial proliferation in patients with rheumatoid arthritis. Clin Immunol Immunopathol 76:225–233

    PubMed  CAS  Google Scholar 

  58. Ohba T, Takase Y, Ohhara M, Kasukawa R (1996) Thrombin in the synovial fluid of patients with rheumatoid arthritis mediates proliferation of synovial fibroblast-like cells by induction of platelet derived growth factor. J Rheumatol 23:1505–1511

    PubMed  CAS  Google Scholar 

  59. Shin H, Kitajima I, Nakajima T, Shao Q, Tokioka T, Takasaki I, Hanyu N, Kubo T, Maruyama I (1999) Thrombin receptor mediated signals induce expressions of interleukin 6 and granulocyte colony stimulating factor via NF-kappa B activation in synovial fibroblasts. Ann Rheum Dis 58:55–60

    PubMed  CAS  Google Scholar 

  60. Morris R, Winyard PG, Brass LF, Blake DR, Morris CJ (1996) Thrombin receptor expression in rheumatoid and osteoarthritic synovial tissue. Ann Rheum Dis 55:841–843

    PubMed  CAS  Google Scholar 

  61. Macfarlane SR, Seatter MJ, Kanke T, Hunter GD, Plevin R (2001) Proteinase-activated receptors. Pharmacol Rev 53:245–282

    PubMed  CAS  Google Scholar 

  62. Naldini A, Sower L, Bocci V, Meyers B, Carney DH (1998) Thrombin receptor expression and responsiveness of human monocytic cells to thrombin is linked to interferon-induced cellular differentiation. J Cell Physiol 177:76–84

    PubMed  CAS  Google Scholar 

  63. Cirino G, Cicala C, Bucci MR, Sorrentino L, Maraganore JM, Stone SR (1996) Thrombin functions as an inflammatory mediator through activation of its receptor. J Exp Med 183:821–827

    PubMed  CAS  Google Scholar 

  64. D'Andrea MR, Rogahn CJ, ndrade-Gordon P (2000) Localization of protease-activated receptors-1 and -2 in human mast cells: indications for an amplified mast cell degranulation cascade. BiotechHistochem 75:85–90

    PubMed  Google Scholar 

  65. de Garavilla L, Vergnolle N, Young SH, Ennes H, Steinhoff M, Ossovskaya VS, D'Andrea MR, Mayer EA, Wallace JL, Hollenberg MD et al (2001) Agonists of proteinase-activated receptor 1 induce plasma extravasation by a neurogenic mechanism. Br J Pharmacol 133:975–987

    PubMed  Google Scholar 

  66. Mari B, Imbert V, Belhacene N, Far DF, Peyron JF, Pouyssegur J, Van Obberghen-Schilling E, Rossi B, Auberger P (1994) Thrombin and thrombin receptor agonist peptide induce early events of T cell activation and synergize with TCR cross-linking for CD69 expression and interleukin 2 production. J Biol Chem 269:8517–8523

    PubMed  CAS  Google Scholar 

  67. Furuhashi I, Abe K, Sato T, Inoue H (2008) Thrombin-stimulated proliferation of cultured human synovial fibroblasts through proteolytic activation of proteinase-activated receptor-1. J Pharmacol Sci 108:104–111

    PubMed  CAS  Google Scholar 

  68. Markwardt F (2002) Historical perspective of the development of thrombin inhibitors. Pathophysiol Haemost Thromb 32(Suppl 3):15–22

    PubMed  CAS  Google Scholar 

  69. Nakanishi-Matsui M, Zheng YW, Sulciner DJ, Weiss EJ, Ludeman MJ, Coughlin SR (2000) PAR3 is a cofactor for PAR4 activation by thrombin. Nature 404:609–613

    PubMed  CAS  Google Scholar 

  70. Hirano F, Kobayashi A, Hirano Y, Nomura Y, Fukawa E, Makino I (2002) Thrombin-induced expression of RANTES mRNA through protease activated receptor-1 in human synovial fibroblasts. Ann Rheum Dis 61:834–837

    PubMed  CAS  Google Scholar 

  71. Yang YH, Hall P, Little CB, Fosang AJ, Milenkovski G, Santos L, Xue J, Tipping P, Morand EF (2005) Reduction of arthritis severity in protease-activated receptor-deficient mice. Arthritis Rheum 52:1325–1332

    PubMed  CAS  Google Scholar 

  72. Krupiczojc MA, Scotton CJ, Chambers RC (2008) Coagulation signalling following tissue injury: focus on the role of factor Xa. Int J Biochem Cell Biol 40:1228–1237

    PubMed  CAS  Google Scholar 

  73. Jones A, Geczy CL (1990) Thrombin and factor Xa enhance the production of interleukin-1. Immunology 71:236–241

    PubMed  CAS  Google Scholar 

  74. Senden NH, Jeunhomme TM, Heemskerk JW, Wagenvoord R, van’t Veer C, Hemker HC, Buurman WA (1998) Factor Xa induces cytokine production and expression of adhesion molecules by human umbilical vein endothelial cells. J Immunol 161:4318–4324

    PubMed  CAS  Google Scholar 

  75. Bachli EB, Pech CM, Johnson KM, Johnson DJ, Tuddenham EG, McVey JH (2003) Factor Xa and thrombin, but not factor VIIa, elicit specific cellular responses in dermal fibroblasts. J Thromb Haemost 1:1935–1944

    PubMed  CAS  Google Scholar 

  76. Camerer E, Huang W, Coughlin SR (2000) Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc Natl Acad Sci USA 97:5255–5260

    PubMed  CAS  Google Scholar 

  77. Smyth SS, Woulfe DS, Weitz JI, Gachet C, Conley PB, Goodman SG, Roe MT, Kuliopulos A, Moliterno DJ, French PA et al (2009) G-protein-coupled receptors as signaling targets for antiplatelet therapy. Arterioscler Thromb Vasc Biol 29:449–457

    PubMed  CAS  Google Scholar 

  78. Macaulay TE, Allen C, Ziada KM (2010) Thrombin receptor antagonism -the potential of antiplatelet medication SCH 530348. Expert Opin Pharmacother 11:1015–1022

    PubMed  CAS  Google Scholar 

  79. Martin L, Auge C, Boue J, Buresi MC, Chapman K, Asfaha S, Andrade-Gordon P, Steinhoff M, Cenac N, Dietrich G et al (2009) Thrombin receptor: An endogenous inhibitor of inflammatory pain, activating opioid pathways. Pain 146:121–129

    PubMed  CAS  Google Scholar 

  80. Asfaha S, Brussee V, Chapman K, Zochodne DW, Vergnolle N (2002) Proteinase-activated receptor-1 agonists attenuate nociception in response to noxious stimuli. Br J Pharmacol 135:1101–1106

    PubMed  CAS  Google Scholar 

  81. Kawabata A, Kawao N, Kuroda R, Tanaka A, Shimada C (2002) The PAR-1-activating peptide attenuates carrageenan-induced hyperalgesia in rats. Peptides 23:1181–1183

    PubMed  CAS  Google Scholar 

  82. Helyes Z, Sandor K, Borbely E, Tekus V, Pinter E, Elekes K, Toth DM, Szolcsanyi J, McDougall JJ (2009) Involvement of transient receptor potential vanilloid 1 receptors in protease-activated receptor-2-induced joint inflammation and nociception. Eur J Pain 14:351-358

    Google Scholar 

  83. Kelso EB, Lockhart JC, Hembrough T, Dunning L, Plevin R, Hollenberg MD, Sommerhoff CP, McLean JS, Ferrell WR (2006) Therapeutic promise of proteinase-activated receptor-2 antagonism in joint inflammation. J Pharmacol Exp Ther 316:1017–1024

    PubMed  CAS  Google Scholar 

  84. Ferrell WR, Kelso EB, Lockhart JC, Plevin R, McInnes IB (2010) Protease-activated receptor 2: a novel pathogenic pathway in a murine model of osteoarthritis. Ann Rheum Dis 69:2051–2054

    PubMed  Google Scholar 

  85. McDougall JJ, Zhang C, Cellars L, Joubert E, Dixon CM, Vergnolle N (2009) Triggering of proteinase-activated receptor 4 leads to joint pain and inflammation in mice. Arthritis Rheum 60:728–737

    PubMed  CAS  Google Scholar 

  86. Russell FA, Veldhoen VE, Tchitchkan D, McDougall JJ (2010) Proteinase-activated receptor-4 (PAR4) activation leads to sensitization of rat joint primary afferents via a bradykinin B2 receptor-dependent mechanism. J Neurophysiol 103:155–163

    PubMed  CAS  Google Scholar 

  87. Knecht W, Cottrell GS, Amadesi S, Mohlin J, Skaregarde A, Gedda K, Peterson A, Chapman K, Hollenberg MD, Vergnolle N et al (2007) Trypsin IV or mesotrypsin and p23 cleave protease-activated receptors 1 and 2 to induce inflammation and hyperalgesia. J Biol Chem 282:26089–26100

    PubMed  CAS  Google Scholar 

  88. Ferrell WR, Lockhart JC, Kelso EB, Dunning L, Plevin R, Meek SE, Smith AJ, Hunter GD, McLean JS, McGarry F et al (2003) Essential role for proteinase-activated receptor-2 in arthritis. J Clin Invest 111:35–41

    PubMed  CAS  Google Scholar 

  89. Busso N, Frasnelli M, Feifel R, Cenni B, Steinhoff M, Hamilton J, So A (2007) Evaluation of protease-activated receptor 2 in murine models of arthritis. Arthritis Rheum 56:101–107

    PubMed  CAS  Google Scholar 

  90. Nakano S, Mishiro T, Takahara S, Yokoi H, Hamada D, Yukata K, Takata Y, Goto T, Egawa H, Yasuoka S et al (2007) Distinct expression of mast cell tryptase and protease activated receptor-2 in synovia of rheumatoid arthritis and osteoarthritis. Clin Rheumatol 26:1284–1292

    PubMed  Google Scholar 

  91. Xiang Y, Masuko-Hongo K, Sekine T, Nakamura H, Yudoh K, Nishioka K, Kato T (2006) Expression of proteinase-activated receptors (PAR)-2 in articular chondrocytes is modulated by IL-1beta, TNF-alpha and TGF-beta. Osteoarthr Cartil 14:1163–1173

    PubMed  CAS  Google Scholar 

  92. Abe K, Aslam A, Walls AF, Sato T, Inoue H (2006) Up-regulation of protease-activated receptor-2 by bFGF in cultured human synovial fibroblasts. Life Sci 79:898–904

    PubMed  CAS  Google Scholar 

  93. Tsai SH, Sheu MT, Liang YC, Cheng HT, Fang SS, Chen CH (2009) TGF-beta inhibits IL-1beta-activated PAR-2 expression through multiple pathways in human primary synovial cells. J Biomed Sci 16:97

    PubMed  Google Scholar 

  94. Shpacovitch VM, Brzoska T, Buddenkotte J, Stroh C, Sommerhoff CP, Ansel JC, Schulze-Osthoff K, Bunnett NW, Luger TA, Steinhoff M (2002) Agonists of proteinase-activated receptor 2 induce cytokine release and activation of nuclear transcription factor kappaB in human dermal microvascular endothelial cells. J Invest Dermatol 118:380–385

    PubMed  CAS  Google Scholar 

  95. Kelso EB, Ferrell WR, Lockhart JC, Elias-Jones I, Hembrough T, Dunning L, Gracie JA, McInnes IB (2007) Expression and proinflammatory role of proteinase-activated receptor 2 in rheumatoid synovium: ex vivo studies using a novel proteinase-activated receptor 2 antagonist. Arthritis Rheum 56:765–771

    PubMed  CAS  Google Scholar 

  96. Boileau C, Amiable N, Martel-Pelletier J, Fahmi H, Duval N, Pelletier JP (2007) Activation of proteinase-activated receptor 2 in human osteoarthritic cartilage upregulates catabolic and proinflammatory pathways capable of inducing cartilage degradation: a basic science study. Arthritis Res Ther 9:R121

    PubMed  Google Scholar 

  97. Amiable N, Tat SK, Lajeunesse D, Duval N, Pelletier JP, Martel-Pelletier J, Boileau C (2009) Proteinase-activated receptor (PAR)-2 activation impacts bone resorptive properties of human osteoarthritic subchondral bone osteoblasts. Bone 44:1143–1150

    PubMed  CAS  Google Scholar 

  98. Hayami T, Pickarski M, Wesolowski GA, McLane J, Bone A, Destefano J, Rodan GA, le Duong T (2004) The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum 50:1193–1206

    PubMed  CAS  Google Scholar 

  99. Kwan Tat S, Lajeunesse D, Pelletier JP, Martel-Pelletier J (2010) Targeting subchondral bone for treating osteoarthritis: what is the evidence? Best Pract Res Clin Rheumatol 24:51–70

    PubMed  Google Scholar 

  100. Kwan Tat S, Pelletier JP, Amiable N, Boileau C, Lajeunesse D, Duval N, Martel-Pelletier J (2008) Activation of the receptor EphB4 by its specific ligand ephrin B2 in human osteoarthritic subchondral bone osteoblasts. Arthritis Rheum 58:3820–3830

    PubMed  Google Scholar 

  101. Kwan Tat S, Pelletier JP, Amiable N, Boileau C, Lavigne M, Martel-Pelletier J (2009) Treatment with ephrin B2 positively impacts the abnormal metabolism of human osteoarthritic chondrocytes. Arthritis Res Ther 11:R119

    PubMed  Google Scholar 

  102. Palmer HS, Kelso EB, Lockhart JC, Sommerhoff CP, Plevin R, Goh FG, Ferrell WR (2007) Protease-activated receptor 2 mediates the proinflammatory effects of synovial mast cells. Arthritis Rheum 56:3532–3540

    PubMed  CAS  Google Scholar 

  103. Krishnaswamy G, Kelley J, Johnson D, Youngberg G, Stone W, Huang SK, Bieber J, Chi DS (2001) The human mast cell: functions in physiology and disease. Front Biosci 6:D1109–D1127

    PubMed  CAS  Google Scholar 

  104. Crisp AJ, Chapman CM, Kirkham SE, Schiller AL, Krane SM (1984) Articular mastocytosis in rheumatoid arthritis. Arthritis Rheum 27:845–851

    PubMed  CAS  Google Scholar 

  105. Godfrey HP, Ilardi C, Engber W, Graziano FM (1984) Quantitation of human synovial mast cells in rheumatoid arthritis and other rheumatic diseases. Arthritis Rheum 27:852–856

    PubMed  CAS  Google Scholar 

  106. Nigrovic PA, Lee DM (2007) Synovial mast cells: role in acute and chronic arthritis. Immunol Rev 217:19–37

    PubMed  CAS  Google Scholar 

  107. Muller A, Voswinkel J, Gottschlich S, Csernok E (2007) Human proteinase 3 (PR3) and its binding molecules: implications for inflammatory and PR3-related autoimmune responses. Ann N Y Acad Sci 1109:84–92

    PubMed  Google Scholar 

  108. Vergnolle N, Bunnett NW, Sharkey KA, Brussee V, Compton SJ, Grady EF, Cirino G, Gerard N, Basbaum AI, Andrade-Gordon P et al (2001) Proteinase-activated receptor-2 and hyperalgesia: A novel pain pathway. Nat Med 7:821–826

    PubMed  CAS  Google Scholar 

  109. Kawabata A, Kawao N, Kuroda R, Tanaka A, Itoh H, Nishikawa H (2001) Peripheral PAR-2 triggers thermal hyperalgesia and nociceptive responses in rats. Neuroreport 12:715–719

    PubMed  CAS  Google Scholar 

  110. Kawabata A, Kawao N, Itoh H, Shimada C, Takebe K, Kuroda R, Masuko T, Kataoka K, Ogawa S (2002) Role of N-methyl-d-aspartate receptors and the nitric oxide pathway in nociception/hyperalgesia elicited by protease-activated receptor-2 activation in mice and rats. Neurosci Lett 329:349–353

    PubMed  CAS  Google Scholar 

  111. Cenac N, Andrews CN, Holzhausen M, Chapman K, Cottrell G, Andrade-Gordon P, Steinhoff M, Barbara G, Beck P, Bunnett NW et al (2007) Role for protease activity in visceral pain in irritable bowel syndrome. J Clin Invest 117:636–647

    PubMed  CAS  Google Scholar 

  112. Helyes Z, Sandor K, Borbely E, Tekus V, Pinter E, Elekes K, Toth DM, Szolcsanyi J, McDougall JJ (2010) Involvement of transient receptor potential vanilloid 1 receptors in protease-activated receptor-2-induced joint inflammation and nociception. Eur J Pain 14:351–358

    PubMed  CAS  Google Scholar 

  113. Ishihara H, Connolly AJ, Zeng D, Kahn ML, Zheng YW, Timmons C, Tram T, Coughlin SR (1997) Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386:502–506

    PubMed  CAS  Google Scholar 

  114. Hansen KK, Saifeddine M, Hollenberg MD (2004) Tethered ligand-derived peptides of proteinase-activated receptor 3 (PAR3) activate PAR1 and PAR2 in Jurkat T cells. Immunology 112:183–190

    PubMed  CAS  Google Scholar 

  115. Owen WG (2003) PAR-3 is a low-affinity substrate, high affinity effector of thrombin. Biochem Biophys Res Commun 305:166–168

    PubMed  CAS  Google Scholar 

  116. Mao Y, Jin J, Daniel JL, Kunapuli SP (2009) Regulation of plasmin-induced protease-activated receptor 4 activation in platelets. Platelets 20:191–198

    PubMed  CAS  Google Scholar 

  117. McLaughlin JN, Patterson MM, Malik AB (2007) Protease-activated receptor-3 (PAR3) regulates PAR1 signaling by receptor dimerization. Proc Natl Acad Sci USA 104:5662–5667

    PubMed  CAS  Google Scholar 

  118. Zhu WJ, Yamanaka H, Obata K, Dai Y, Kobayashi K, Kozai T, Tokunaga A, Noguchi K (2005) Expression of mRNA for four subtypes of the proteinase-activated receptor in rat dorsal root ganglia. Brain Res 1041:205–211

    PubMed  CAS  Google Scholar 

  119. Colognato R, Slupsky JR, Jendrach M, Burysek L, Syrovets T, Simmet T (2003) Differential expression and regulation of protease-activated receptors in human peripheral monocytes and monocyte-derived antigen-presenting cells. Blood 102:2645–2652

    PubMed  CAS  Google Scholar 

  120. Moormann C, Artuc M, Pohl E, Varga G, Buddenkotte J, Vergnolle N, Brehler R, Henz BM, Schneider SW, Luger TA et al (2006) Functional characterization and expression analysis of the proteinase-activated receptor-2 in human cutaneous mast cells. J Invest Dermatol 126:746–755

    PubMed  CAS  Google Scholar 

  121. Ostrowska E, Reiser G (2008) The protease-activated receptor-3 (PAR-3) can signal autonomously to induce interleukin-8 release. Cell Mol Life Sci 65:970–981

    PubMed  CAS  Google Scholar 

  122. Chang CJ, Hsu LA, Ko YH, Chen PL, Chuang YT, Lin CY, Liao CH, Pang JH (2009) Thrombin regulates matrix metalloproteinase-9 expression in human monocytes. Biochem Biophys Res Commun 385:241–246

    PubMed  CAS  Google Scholar 

  123. Gruber BL, Sorbi D, French DL, Marchese MJ, Nuovo GJ, Kew RR, Arbeit LA (1996) Markedly elevated serum MMP-9 (gelatinase B) levels in rheumatoid arthritis: a potentially useful laboratory marker. Clin Immunol Immunopathol 78:161–171

    PubMed  CAS  Google Scholar 

  124. Bretschneider E, Spanbroek R, Lotzer K, Habenicht AJ, Schror K (2003) Evidence for functionally active protease-activated receptor-3 (PAR-3) in human vascular smooth muscle cells. Thromb Haemost 90:704–709

    PubMed  CAS  Google Scholar 

  125. Kahn ML, Zheng YW, Huang W, Bigornia V, Zeng D, Moff S, Farese RV Jr, Tam C, Coughlin SR (1998) A dual thrombin receptor system for platelet activation. Nature 394:690–694

    PubMed  CAS  Google Scholar 

  126. Asfaha S, Cenac N, Houle S, Altier C, Papez MD, Nguyen C, Steinhoff M, Chapman K, Zamponi GW, Vergnolle N (2007) Protease-activated receptor-4: a novel mechanism of inflammatory pain modulation. Br J Pharmacol 150:176–185

    PubMed  CAS  Google Scholar 

  127. Vergnolle N, Derian CK, D’Andrea MR, Steinhoff M, Andrade-Gordon P (2002) Characterization of thrombin-induced leukocyte rolling and adherence: a potential proinflammatory role for proteinase-activated receptor-4. J Immunol 169:1467–1473

    PubMed  CAS  Google Scholar 

  128. Hollenberg MD, Saifeddine M, Sandhu S, Houle S, Vergnolle N (2004) Proteinase-activated receptor-4: evaluation of tethered ligand-derived peptides as probes for receptor function and as inflammatory agonists in vivo. Br J Pharmacol 143:443–454

    PubMed  CAS  Google Scholar 

  129. Houle S, Papez MD, Ferazzini M, Hollenberg MD, Vergnolle N (2005) Neutrophils and the kallikrein-kinin system in proteinase-activated receptor 4-mediated inflammation in rodents. Br J Pharmacol 146:670–678

    PubMed  CAS  Google Scholar 

  130. Shapiro MJ, Weiss EJ, Faruqi TR, Coughlin SR (2000) Protease-activated receptors 1 and 4 are shut off with distinct kinetics after activation by thrombin. J Biol Chem 275:25216–25221

    PubMed  CAS  Google Scholar 

  131. Auge C, Balz-Hara D, Steinhoff M, Vergnolle N, Cenac N (2009) Protease-activated receptor-4 (PAR(4)): a role as inhibitor of visceral pain and hypersensitivity. Neurogastroenterol Motil 21:1189

    PubMed  CAS  Google Scholar 

  132. Rodriguez-Reyna TS, Martinez-Reyes C, Yamamoto-Furusho JK (2009) Rheumatic manifestations of inflammatory bowel disease. World J Gastroenterol 15:5517–5524

    PubMed  CAS  Google Scholar 

  133. De Vos M Joint involvement in inflammatory bowel disease: managing inflammation outside the digestive system. Expert Rev Gastroenterol Hepatol 4: 81–89

    Google Scholar 

  134. Larsen S, Bendtzen K, Nielsen OH (2010) Extraintestinal manifestations of inflammatory bowel disease: epidemiology, diagnosis, and management. Ann Med 42:97–114

    PubMed  Google Scholar 

  135. Hirano K, Nomoto N, Hirano M, Momota F, Hanada A, Kanaide H (2007) Distinct Ca2+ requirement for NO production between proteinase-activated receptor 1 and 4 (PAR1 and PAR4) in vascular endothelial cells. J Pharmacol Exp Ther 322:668–677

    PubMed  CAS  Google Scholar 

  136. Holinstat M, Voss B, Bilodeau ML, McLaughlin JN, Cleator J, Hamm HE (2006) PAR4, but not PAR1, signals human platelet aggregation via Ca2+ mobilization and synergistic P2Y12 receptor activation. J Biol Chem 281:26665–26674

    PubMed  CAS  Google Scholar 

  137. Faruqi TR, Weiss EJ, Shapiro MJ, Huang W, Coughlin SR (2000) Structure-function analysis of protease-activated receptor 4 tethered ligand peptides. Determinants of specificity and utility in assays of receptor function. J Biol Chem 275:19728–19734

    PubMed  CAS  Google Scholar 

  138. Sambrano GR, Huang W, Faruqi T, Mahrus S, Craik C, Coughlin SR (2000) Cathepsin G activates protease-activated receptor-4 in human platelets. J Biol Chem 275:6819–6823

    PubMed  CAS  Google Scholar 

  139. Velvart M, Fehr K (1987) Degradation in vivo of articular cartilage in rheumatoid arthritis and juvenile chronic arthritis by cathepsin G and elastase from polymorphonuclear leukocytes. Rheumatol Int 7:195–202

    PubMed  CAS  Google Scholar 

  140. Nordstrom D, Lindy O, Konttinen YT, Lauhio A, Sorsa T, Friman C, Pettersson T, Santavirta S (1996) Cathepsin G and elastase in synovial fluid and peripheral blood in reactive and rheumatoid arthritis. Clin Rheumatol 15:35–41

    PubMed  CAS  Google Scholar 

  141. Adkison AM, Raptis SZ, Kelley DG, Pham CT (2002) Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis. J Clin Invest 109:363–371

    PubMed  CAS  Google Scholar 

  142. Wilson TJ, Nannuru KC, Singh RK (2009) Cathepsin G recruits osteoclast precursors via proteolytic activation of protease-activated receptor-1. Cancer Res 69:3188–3195

    PubMed  CAS  Google Scholar 

  143. Quinton TM, Kim S, Derian CK, Jin J, Kunapuli SP (2004) Plasmin-mediated activation of platelets occurs by cleavage of protease-activated receptor 4. J Biol Chem 279:18434–18439

    PubMed  CAS  Google Scholar 

  144. Syrovets T, Simmet T (2004) Novel aspects and new roles for the serine protease plasmin. Cell Mol Life Sci 61:873–885

    PubMed  CAS  Google Scholar 

  145. Ronday HK, Smits HH, Van Muijen GN, Pruszczynski MS, Dolhain RJ, Van Langelaan EJ, Breedveld FC, Verheijen JH (1996) Difference in expression of the plasminogen activation system in synovial tissue of patients with rheumatoid arthritis and osteoarthritis. Br J Rheumatol 35:416–423

    PubMed  CAS  Google Scholar 

  146. Brommer EJ, Dooijewaard G, Dijkmans BA, Breedveld FC (1992) Plasminogen activators in synovial fluid and plasma from patients with arthritis. Ann Rheum Dis 51:965–968

    PubMed  CAS  Google Scholar 

  147. Kimura M, Andersen TT, Fenton JW 2nd, Bahou WF, Aviv A (1996) Plasmin-platelet interaction involves cleavage of functional thrombin receptor. Am J Physiol 271:C54–C60

    PubMed  CAS  Google Scholar 

  148. Kuliopulos A, Covic L, Seeley SK, Sheridan PJ, Helin J, Costello CE (1999) Plasmin desensitization of the PAR1 thrombin receptor: kinetics, sites of truncation, and implications for thrombolytic therapy. Biochemistry 38:4572–4585

    PubMed  CAS  Google Scholar 

  149. Busso N, Hamilton JA (2002) Extravascular coagulation and the plasminogen activator/plasmin system in rheumatoid arthritis. Arthritis Rheum 46:2268–2279

    PubMed  CAS  Google Scholar 

  150. Hamilton JA (2008) Plasminogen activator/plasmin system in arthritis and inflammation: friend or foe? Arthritis Rheum 58:645–648

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason J. McDougall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel

About this chapter

Cite this chapter

Russell, F.A., McDougall, J.J. (2011). Proteinase-Activated Receptors and Arthritis. In: Vergnolle, N., Chignard, M. (eds) Proteases and Their Receptors in Inflammation. Progress in Inflammation Research. Springer, Basel. https://doi.org/10.1007/978-3-0348-0157-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0157-7_9

  • Published:

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0348-0156-0

  • Online ISBN: 978-3-0348-0157-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics