Skip to main content

Kallikrein Protease Involvement in Skin Pathologies Supports a New View of the Origin of Inflamed Itchy Skin

  • Chapter
  • First Online:
Proteases and Their Receptors in Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

  • 794 Accesses

Abstract

Skin barrier defects in common dermatological diseases, such as atopic dermatitis and psoriasis, are mostly attributed to anomalies in T-cell immunity. A new viewpoint of inflammatory dermatoses onset was recently suggested, in which barrier defects trigger secretion of pro-inflammatory mediators by stressed keratinocyte cells, which activate the T-cell immune system and further deteriorate the barrier. Herein, we review epidermal keratinocytes as active immune cells. In particular, we focus on recent groundbreaking evidence on the role of keratinocyte-secreted kallikreins as inflammation and allergy mediators. Kallikreins are skin surface proteases known for their role in digesting adhesion proteins and maintaining barrier integrity and function. Kallikrein hyperactivity in skin pathologies was recently shown to mediate inflammation secondary to inherited and acquired barrier defects, in support of the epidermal roots of inflamed and itchy skin. Hence, future therapy design should be directed toward ameliorating keratinocyte-induced barrier defects and inflammation, alone or in combination with dampening T-cell immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ludolph-Hauser D, Schubert C, Wiedow O (1999) Structural changes of human epidermis induced by human leukocyte-derived proteases. Exp Dermatol 8:46–52

    Article  PubMed  CAS  Google Scholar 

  2. Hatano Y, Terashi H, Arakawa S, Katagiri K (2005) Interleukin-4 suppresses the enhancement of ceramide synthesis and cutaneous permeability barrier functions induced by tumor necrosis factor-alpha and interferon-gamma in human epidermis. J Invest Dermatol 124:786–792

    Article  PubMed  CAS  Google Scholar 

  3. Kurahashi R, Hatano Y, Katagiri K (2008) IL-4 suppresses the recovery of cutaneous permeability barrier functions in vivo. J Invest Dermatol 128:1329–1331

    Article  PubMed  CAS  Google Scholar 

  4. Homey B, Steinhoff M, Ruzicka T, Leung DY (2006) Cytokines and chemokines orchestrate atopic skin inflammation. J Allergy Clin Immunol 118:178–189

    Article  PubMed  CAS  Google Scholar 

  5. Segre JA (2006) Epidermal barrier formation and recovery in skin disorders. J Clin Invest 116:1150–1158

    Article  PubMed  CAS  Google Scholar 

  6. Cork MJ, Danby SG, Vasilopoulos Y, Hadgraft J, Lane ME, Moustafa M, Guy RH, Macgowan AL, Tazi-Ahnini R, Ward SJ (2009) Epidermal barrier dysfunction in atopic dermatitis. J Invest Dermatol 129:1892–1908

    Article  PubMed  CAS  Google Scholar 

  7. Elias PM, Steinhoff M (2008) “Outside-to-inside” (and now back to “outside”) pathogenic mechanisms in atopic dermatitis. J Invest Dermatol 128:1067–1070

    Article  PubMed  CAS  Google Scholar 

  8. Guttman-Yassky E, Suarez-Farinas M, Chiricozzi A, Nograles KE, Shemer A, Fuentes-Duculan J, Cardinale I, Lin P, Bergman R, Bowcock AM et al (2009) Broad defects in epidermal cornification in atopic dermatitis identified through genomic analysis. J Allergy Clin Immunol 124:1235–1244.e1258

    Article  PubMed  CAS  Google Scholar 

  9. Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, Goudie DR, Sandilands A, Campbell LE, Smith FJ et al (2006) Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 38:441–446

    Article  PubMed  CAS  Google Scholar 

  10. Sandilands A, Terron-Kwiatkowski A, Hull PR, O’Regan GM, Clayton TH, Watson RM, Carrick T, Evans AT, Liao H, Zhao Y et al (2007) Comprehensive analysis of the gene encoding filaggrin uncovers prevalent and rare mutations in ichthyosis vulgaris and atopic eczema. Nat Genet 39:650–654

    Article  PubMed  CAS  Google Scholar 

  11. Hudson TJ (2006) Skin barrier function and allergic risk. Nat Genet 38:399–400

    Article  PubMed  CAS  Google Scholar 

  12. Jung T, Stingl G (2008) Atopic dermatitis: therapeutic concepts evolving from new pathophysiologic insights. J Allergy Clin Immunol 122:1074–1081

    Article  PubMed  CAS  Google Scholar 

  13. Smith FJ, Irvine AD, Terron-Kwiatkowski A, Sandilands A, Campbell LE, Zhao Y, Liao H, Evans AT, Goudie DR, Lewis-Jones S et al (2006) Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat Genet 38:337–342

    Article  PubMed  CAS  Google Scholar 

  14. Elias PM, Schmuth M (2009) Abnormal skin barrier in the etiopathogenesis of atopic dermatitis. Curr Opin Allergy Clin Immunol 9:437–446

    Article  PubMed  CAS  Google Scholar 

  15. Swamy M, Jamora C, Havran W, Hayday A (2010) Epithelial decision makers: in search of the ‘epimmunome’. Nat Immunol 11:656–665

    Article  PubMed  CAS  Google Scholar 

  16. Briot A, Deraison C, Lacroix M, Bonnart C, Robin A, Besson C, Dubus P, Hovnanian A (2009) Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J Exp Med 206:1135–1147

    Article  PubMed  CAS  Google Scholar 

  17. Yamasaki K, Di Nardo A, Bardan A, Murakami M, Ohtake T, Coda A, Dorschner RA, Bonnart C, Descargues P, Hovnanian A et al (2007) Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med 13:975–980

    Article  PubMed  CAS  Google Scholar 

  18. Candi E, Schmidt R, Melino G (2005) The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 6:328–340

    Article  PubMed  CAS  Google Scholar 

  19. Milstone LM (2004) Epidermal desquamation. J Dermatol Sci 36:131–140

    Article  PubMed  Google Scholar 

  20. Elias PM (1983) Epidermal lipids, barrier function, and desquamation. J Invest Dermatol 80(Suppl):44s–49s

    Article  CAS  Google Scholar 

  21. Ohman H, Vahlquist A (1994) In vivo studies concerning a pH gradient in human stratum corneum and upper epidermis. Acta Derm Venereol 74:375–379

    PubMed  CAS  Google Scholar 

  22. Rippke F, Schreiner V, Doering T, Maibach HI (2004) Stratum corneum pH in atopic dermatitis: impact on skin barrier function and colonization with Staphylococcus aureus. Am J Clin Dermatol 5:217–223

    Article  PubMed  Google Scholar 

  23. Hachem JP, Crumrine D, Fluhr J, Brown BE, Feingold KR, Elias PM (2003) pH directly regulates epidermal permeability barrier homeostasis, and stratum corneum integrity/cohesion. J Invest Dermatol 121:345–353

    Article  PubMed  CAS  Google Scholar 

  24. Hachem JP, Houben E, Crumrine D, Man MQ, Schurer N, Roelandt T, Choi EH, Uchida Y, Brown BE, Feingold KR et al (2006) Serine protease signaling of epidermal permeability barrier homeostasis. J Invest Dermatol 126:2074–2086

    Article  PubMed  CAS  Google Scholar 

  25. Menon GK (2002) New insights into skin structure: scratching the surface. Adv Drug Deliv Rev 54(Suppl 1):S3–S17

    Article  PubMed  CAS  Google Scholar 

  26. Borgono CA, Diamandis EP (2004) The emerging roles of human tissue kallikreins in cancer. Nat Rev Cancer 4:876–890

    Article  PubMed  CAS  Google Scholar 

  27. Komatsu N, Tsai B, Sidiropoulos M, Saijoh K, Levesque MA, Takehara K, Diamandis EP (2006) Quantification of eight tissue kallikreins in the stratum corneum and sweat. J Invest Dermatol 126:925–929

    PubMed  CAS  Google Scholar 

  28. Komatsu N, Saijoh K, Sidiropoulos M, Tsai B, Levesque MA, Elliott MB, Takehara K, Diamandis EP (2005) Quantification of human tissue kallikreins in the stratum corneum: dependence on age and gender. J Invest Dermatol 125:1182–1189

    Article  PubMed  CAS  Google Scholar 

  29. Komatsu N, Saijoh K, Toyama T, Ohka R, Otsuki N, Hussack G, Takehara K, Diamandis EP (2005) Multiple tissue kallikrein mRNA and protein expression in normal skin and skin diseases. Br J Dermatol 153:274–281

    Article  PubMed  CAS  Google Scholar 

  30. Brattsand M, Egelrud T (1999) Purification, molecular cloning, and expression of a human stratum corneum trypsin-like serine protease with possible function in desquamation. J Biol Chem 274:30033–30040

    Article  PubMed  CAS  Google Scholar 

  31. Egelrud T, Lundstrom A (1991) A chymotrypsin-like proteinase that may be involved in desquamation in plantar stratum corneum. Arch Dermatol Res 283:108–112

    Article  PubMed  CAS  Google Scholar 

  32. Brattsand M, Stefansson K, Lundh C, Haasum Y, Egelrud T (2005) A proteolytic cascade of kallikreins in the stratum corneum. J Invest Dermatol 124:198–203

    Article  PubMed  CAS  Google Scholar 

  33. Descargues P, Deraison C, Prost C, Fraitag S, Mazereeuw-Hautier J, D’Alessio M, Ishida-Yamamoto A, Bodemer C, Zambruno G, Hovnanian A (2006) Corneodesmosomal cadherins are preferential targets of stratum corneum trypsin- and chymotrypsin-like hyperactivity in Netherton syndrome. J Invest Dermatol 126:1622–1632

    Article  PubMed  CAS  Google Scholar 

  34. Egelrud T, Lundstrom A (1990) The dependence of detergent-induced cell dissociation in non-palmo-plantar stratum corneum on endogenous proteolysis. J Invest Dermatol 95:456–459

    Article  PubMed  CAS  Google Scholar 

  35. Yoon H, Laxmikanthan G, Lee J, Blaber SI, Rodriguez A, Kogot JM, Scarisbrick IA, Blaber M (2007) Activation profiles and regulatory cascades of the human kallikrein-related peptidases. J Biol Chem 282:31852–31864

    Article  PubMed  CAS  Google Scholar 

  36. Eissa A, Amodeo V, Smith CR, Diamandis EP (2011) Kallikrein-related peptidase-8 (KLK8) is an active serine protease in human epidermis and sweat and is involved in a skin barrier proteolytic cascade. J Biol Chem 286:687–706

    Article  PubMed  CAS  Google Scholar 

  37. Bonnart C, Deraison C, Lacroix M, Uchida Y, Besson C, Robin A, Briot A, Gonthier M, Lamant L, Dubus P et al (2010) Elastase 2 is expressed in human and mouse epidermis and impairs skin barrier function in Netherton syndrome through filaggrin and lipid misprocessing. J Clin Invest 120:871–882

    Article  PubMed  CAS  Google Scholar 

  38. Kishibe M, Bando Y, Terayama R, Namikawa K, Takahashi H, Hashimoto Y, Ishida-Yamamoto A, Jiang YP, Mitrovic B, Perez D et al (2007) Kallikrein 8 is involved in skin desquamation in cooperation with other kallikreins. J Biol Chem 282:5834–5841

    Article  PubMed  CAS  Google Scholar 

  39. Wingens M, van Bergen BH, Hiemstra PS, Meis JF, van Vlijmen-Willems IM, Zeeuwen PL, Mulder J, Kramps HA, van Ruissen F, Schalkwijk J (1998) Induction of SLPI (ALP/HUSI-I) in epidermal keratinocytes. J Invest Dermatol 111:996–1002

    Article  PubMed  CAS  Google Scholar 

  40. Caubet C, Jonca N, Brattsand M, Guerrin M, Bernard D, Schmidt R, Egelrud T, Simon M, Serre G (2004) Degradation of corneodesmosome proteins by two serine proteases of the kallikrein family, SCTE/KLK5/hK5 and SCCE/KLK7/hK7. J Invest Dermatol 122:1235–1244

    Article  PubMed  CAS  Google Scholar 

  41. Shigemasa K, Tanimoto H, Underwood LJ, Parmley TH, Arihiro K, Ohama K, O’Brien TJ (2001) Expression of the protease inhibitor antileukoprotease and the serine protease stratum corneum chymotryptic enzyme (SCCE) is coordinated in ovarian tumors. Int J Gynecol Cancer 11:454–461

    Article  PubMed  CAS  Google Scholar 

  42. Deraison C, Bonnart C, Lopez F, Besson C, Robinson R, Jayakumar A, Wagberg F, Brattsand M, Hachem JP, Leonardsson G et al (2007) LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol Biol Cell 18:3607–3619

    Article  PubMed  CAS  Google Scholar 

  43. Brattsand M, Stefansson K, Hubiche T, Nilsson SK, Egelrud T (2009) SPINK9: a selective, skin-specific Kazal-type serine protease inhibitor. J Invest Dermatol 129:1656–1665

    Article  PubMed  CAS  Google Scholar 

  44. Meyer-Hoffert U, Wu Z, Schroder JM (2009) Identification of lympho-epithelial Kazal-type inhibitor 2 in human skin as a kallikrein-related peptidase 5-specific protease inhibitor. PLoS One 4:e4372

    Article  PubMed  Google Scholar 

  45. Meyer-Hoffert U, Wu Z, Kantyka T, Fischer J, Latendorf T, Hansmann B, Bartels J, He Y, Glaeser R, Schroeder JM (2010) Isolation of Spink6 in human skin: a selective inhibitor of kallikrein-related peptidases. J Biol Chem 285:32174–32181

    Article  PubMed  CAS  Google Scholar 

  46. Kato T, Takai T, Mitsuishi K, Okumura K, Ogawa H (2005) Cystatin A inhibits IL-8 production by keratinocytes stimulated with Der p 1 and Der f 1: biochemical skin barrier against mite cysteine proteases. J Allergy Clin Immunol 116:169–176

    Article  PubMed  CAS  Google Scholar 

  47. Hachem JP, Man MQ, Crumrine D, Uchida Y, Brown BE, Rogiers V, Roseeuw D, Feingold KR, Elias PM (2005) Sustained serine proteases activity by prolonged increase in pH leads to degradation of lipid processing enzymes and profound alterations of barrier function and stratum corneum integrity. J Invest Dermatol 125:510–520

    Article  PubMed  CAS  Google Scholar 

  48. Houben E, Hachem JP, De Paepe K, Rogiers V (2008) Epidermal ceramidase activity regulates epidermal desquamation via stratum corneum acidification. Skin Pharmacol Physiol 21:111–118

    Article  PubMed  CAS  Google Scholar 

  49. Hachem JP, Roelandt T, Schurer N, Pu X, Fluhr J, Giddelo C, Man MQ, Crumrine D, Roseeuw D, Feingold KR et al (2010) Acute acidification of stratum corneum membrane domains using polyhydroxyl acids improves lipid processing and inhibits degradation of corneodesmosomes. J Invest Dermatol 130:500–510

    Article  PubMed  CAS  Google Scholar 

  50. Oikonomopoulou K, Hansen KK, Saifeddine M, Tea I, Blaber M, Blaber SI, Scarisbrick I, Andrade-Gordon P, Cottrell GS, Bunnett NW et al (2006) Proteinase-activated receptors, targets for kallikrein signaling. J Biol Chem 281:32095–32112

    Article  PubMed  CAS  Google Scholar 

  51. Kirihara T, Matsumoto-Miyai K, Nakamura Y, Sadayama T, Yoshida S, Shiosaka S (2003) Prolonged recovery of ultraviolet B-irradiated skin in neuropsin (KLK8)-deficient mice. Br J Dermatol 149:700–706

    Article  PubMed  CAS  Google Scholar 

  52. Kitayoshi H, Inoue N, Kuwae K, Chen ZL, Sato H, Ohta T, Hosokawa K, Itami S, Yoshikawa K, Yoshida S et al (1999) Effect of 12-O-tetradecanoyl-phorbol ester and incisional wounding on neuropsin mRNA and its protein expression in murine skin. Arch Dermatol Res 291:333–338

    Article  PubMed  CAS  Google Scholar 

  53. Ny A, Egelrud T (2004) Epidermal hyperproliferation and decreased skin barrier function in mice overexpressing stratum corneum chymotryptic enzyme. Acta Derm Venereol 84:18–22

    Article  PubMed  CAS  Google Scholar 

  54. Ekholm E, Egelrud T (1999) Stratum corneum chymotryptic enzyme in psoriasis. Arch Dermatol Res 291:195–200

    Article  PubMed  CAS  Google Scholar 

  55. Komatsu N, Saijoh K, Kuk C, Liu AC, Khan S, Shirasaki F, Takehara K, Diamandis EP (2007) Human tissue kallikrein expression in the stratum corneum and serum of atopic dermatitis patients. Exp Dermatol 16:513–519

    Article  PubMed  CAS  Google Scholar 

  56. Komatsu N, Saijoh K, Kuk C, Shirasaki F, Takehara K, Diamandis EP (2007) Aberrant human tissue kallikrein levels in the stratum corneum and serum of patients with psoriasis: dependence on phenotype, severity and therapy. Br J Dermatol 156:875–883

    Article  CAS  Google Scholar 

  57. Nylander-Lundqvist E, Egelrud T (1997) Formation of active IL-1 beta from pro-IL-1 beta catalyzed by stratum corneum chymotryptic enzyme in vitro. Acta Derm Venereol 77:203–206

    PubMed  CAS  Google Scholar 

  58. Wang B, Amerio P, Sauder DN (1999) Role of cytokines in epidermal Langerhans cell migration. J Leukoc Biol 66:33–39

    PubMed  CAS  Google Scholar 

  59. Nylander-Lundqvist E, Back O, Egelrud T (1996) IL-1 beta activation in human epidermis. J Immunol 157:1699–1704

    PubMed  CAS  Google Scholar 

  60. Hansson L, Backman A, Ny A, Edlund M, Ekholm E, Ekstrand Hammarstrom B, Tornell J, Wallbrandt P, Wennbo H, Egelrud T (2002) Epidermal overexpression of stratum corneum chymotryptic enzyme in mice: a model for chronic itchy dermatitis. J Invest Dermatol 118:444–449

    Article  PubMed  CAS  Google Scholar 

  61. Descargues P, Deraison C, Bonnart C, Kreft M, Kishibe M, Ishida-Yamamoto A, Elias P, Barrandon Y, Zambruno G, Sonnenberg A et al (2005) Spink5-deficient mice mimic Netherton syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity. Nat Genet 37:56–65

    PubMed  CAS  Google Scholar 

  62. Chavanas S, Bodemer C, Rochat A, Hamel-Teillac D, Ali M, Irvine AD, Bonafe JL, Wilkinson J, Taieb A, Barrandon Y et al (2000) Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet 25:141–142

    Article  PubMed  CAS  Google Scholar 

  63. Hachem JP, Wagberg F, Schmuth M, Crumrine D, Lissens W, Jayakumar A, Houben E, Mauro TM, Leonardsson G, Brattsand M et al (2006) Serine protease activity and residual LEKTI expression determine phenotype in Netherton syndrome. J Invest Dermatol 126:1609–1621

    Article  PubMed  CAS  Google Scholar 

  64. Soumelis V, Reche PA, Kanzler H, Yuan W, Edward G, Homey B, Gilliet M, Ho S, Antonenko S, Lauerma A et al (2002) Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol 3:673–680

    Article  PubMed  CAS  Google Scholar 

  65. Ziegler SF, Artis D (2010) Sensing the outside world: TSLP regulates barrier immunity. Nat Immunol 11:289–293

    Article  PubMed  CAS  Google Scholar 

  66. He R, Oyoshi MK, Garibyan L, Kumar L, Ziegler SF, Geha RS (2008) TSLP acts on infiltrating effector T cells to drive allergic skin inflammation. Proc Natl Acad Sci USA 105:11875–11880

    Article  PubMed  CAS  Google Scholar 

  67. Yamasaki K, Gallo RL (2008) Antimicrobial peptides in human skin disease. Eur J Dermatol 18:11–21

    PubMed  CAS  Google Scholar 

  68. Zaiou M, Nizet V, Gallo RL (2003) Antimicrobial and protease inhibitory functions of the human cathelicidin (hCAP18/LL-37) prosequence. J Invest Dermatol 120:810–816

    Article  PubMed  CAS  Google Scholar 

  69. Dorschner RA, Pestonjamasp VK, Tamakuwala S, Ohtake T, Rudisill J, Nizet V, Agerberth B, Gudmundsson GH, Gallo RL (2001) Cutaneous injury induces the release of cathelicidin anti-microbial peptides active against group A Streptococcus. J Invest Dermatol 117:91–97

    Article  PubMed  CAS  Google Scholar 

  70. Howell MD, Gallo RL, Boguniewicz M, Jones JF, Wong C, Streib JE, Leung DY (2006) Cytokine milieu of atopic dermatitis skin subverts the innate immune response to vaccinia virus. Immunity 24:341–348

    Article  PubMed  CAS  Google Scholar 

  71. Yamasaki K, Schauber J, Coda A, Lin H, Dorschner RA, Schechter NM, Bonnart C, Descargues P, Hovnanian A, Gallo RL (2006) Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. FASEB J 20:2068–2080

    Article  PubMed  CAS  Google Scholar 

  72. Niyonsaba F, Ushio H, Hara M, Yokoi H, Tominaga M, Takamori K, Kajiwara N, Saito H, Nagaoka I, Ogawa H et al (2010) Antimicrobial peptides human beta-defensins and cathelicidin LL-37 induce the secretion of a pruritogenic cytokine IL-31 by human mast cells. J Immunol 184:3526–3534

    Article  PubMed  CAS  Google Scholar 

  73. Tjabringa GS, Ninaber DK, Drijfhout JW, Rabe KF, Hiemstra PS (2006) Human cathelicidin LL-37 is a chemoattractant for eosinophils and neutrophils that acts via formyl-peptide receptors. Int Arch Allergy Immunol 140:103–112

    Article  PubMed  CAS  Google Scholar 

  74. Ny A, Egelrud T (2003) Transgenic mice over-expressing a serine protease in the skin: evidence of interferon gamma-independent MHC II expression by epidermal keratinocytes. Acta Derm Venereol 83:322–327

    Article  PubMed  CAS  Google Scholar 

  75. Steinhoff M, Corvera CU, Thoma MS, Kong W, McAlpine BE, Caughey GH, Ansel JC, Bunnett NW (1999) Proteinase-activated receptor-2 in human skin: tissue distribution and activation of keratinocytes by mast cell tryptase. Exp Dermatol 8:282–294

    Article  PubMed  CAS  Google Scholar 

  76. Steinhoff M, Neisius U, Ikoma A, Fartasch M, Heyer G, Skov PS, Luger TA, Schmelz M (2003) Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J Neurosci 23:6176–6180

    PubMed  CAS  Google Scholar 

  77. Sales KU, Masedunskas A, Bey AL, Rasmussen AL, Weigert R, List K, Szabo R, Overbeek PA, Bugge TH (2010) Matriptase initiates activation of epidermal pro-kallikrein and disease onset in a mouse model of Netherton syndrome. Nat Genet 42:676–683

    Article  PubMed  CAS  Google Scholar 

  78. Kaplan AP, Silverberg M, Ghebrehiwet B, Atkins P, Zweiman B (1989) The kallikrein-kinin system in inflammation. Adv Exp Med Biol 247A:125–136

    PubMed  CAS  Google Scholar 

  79. Ponticelli C, Meroni PL (2009) Kallikreins and lupus nephritis. J Clin Invest 119:768–771

    Article  PubMed  CAS  Google Scholar 

  80. Eissa A, Diamandis EP (2008) Human tissue kallikreins as promiscuous modulators of homeostatic skin barrier functions. Biol Chem 389:669–680

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Natural Sciences and Engineering Council (NSERC) of Canada as our generous funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleftherios P. Diamandis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel

About this chapter

Cite this chapter

Eissa, A., Diamandis, E.P. (2011). Kallikrein Protease Involvement in Skin Pathologies Supports a New View of the Origin of Inflamed Itchy Skin. In: Vergnolle, N., Chignard, M. (eds) Proteases and Their Receptors in Inflammation. Progress in Inflammation Research. Springer, Basel. https://doi.org/10.1007/978-3-0348-0157-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0157-7_3

  • Published:

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0348-0156-0

  • Online ISBN: 978-3-0348-0157-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics