Skip to main content

The Role of Inflammasomes in Viral Infection

  • Chapter
  • First Online:
The Inflammasomes

Part of the book series: Progress in Inflammation Research ((PIR))

  • 1214 Accesses

Abstract

There are three known receptors capable of inducing inflammasome formation in response to viral infections: NLRP3, AIM2, and RIG-I. Here, we discuss the viruses and mechanisms of activation involved in inflammasome signaling. We also briefly discuss some of the viruses known to activate caspase-1 and induce secretion of IL-1β or IL-18, but for which the upstream inflammasome signaling pathway is not fully elucidated. Finally, the ability of several virus-encoded proteins to counteract inflammasome activation and their role in the pathogenesis of disease is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Creagh EM, O’Neill LA (2006) TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol 27:352–357

    Article  PubMed  CAS  Google Scholar 

  2. Takeuchi O, Akira S (2009) Innate immunity to virus infection. Immunol Rev 227:75–86

    Article  PubMed  CAS  Google Scholar 

  3. Wilkins C, Gale M Jr (2010) Recognition of viruses by cytoplasmic sensors. Curr Opin Immunol 22(1):41–47

    Article  PubMed  CAS  Google Scholar 

  4. Yang X, Chang HY, Baltimore D (1998) Autoproteolytic activation of pro-caspases by oligomerization. Mol Cell 1:319–325

    Article  PubMed  CAS  Google Scholar 

  5. Srinivasula SM, Poyet JL, Razmara M, Datta P, Zhang Z, Alnemri ES (2002) The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J Biol Chem 277:21119–21122

    Article  PubMed  CAS  Google Scholar 

  6. Kanneganti TD, Lamkanfi M, Nunez G (2007) Intracellular NOD-like receptors in host defense and disease. Immunity 27:549–559

    Article  PubMed  CAS  Google Scholar 

  7. Lamkanfi M, Dixit VM (2009) Inflammasomes: guardians of cytosolic sanctity. Immunol Rev 227:95–105

    Article  PubMed  CAS  Google Scholar 

  8. Lamkanfi M, Kanneganti TD, Franchi L, Nunez G (2007) Caspase-1 inflammasomes in infection and inflammation. J Leukoc Biol 82:220–225

    Article  PubMed  CAS  Google Scholar 

  9. Petrilli V, Dostert C, Muruve DA, Tschopp J (2007) The inflammasome: a danger sensing complex triggering innate immunity. Curr Opin Immunol 19:615–622

    Article  PubMed  CAS  Google Scholar 

  10. Black RA, Kronheim SR, Merriam JE, March CJ, Hopp TP (1989) A pre-aspartate-specific protease from human leukocytes that cleaves pro-interleukin-1 beta. J Biol Chem 264:5323–5326

    PubMed  CAS  Google Scholar 

  11. Pirhonen J, Sareneva T, Kurimoto M, Julkunen I, Matikainen S (1999) Virus infection activates IL-1 beta and IL-18 production in human macrophages by a caspase-1-dependent pathway. J Immunol 162:7322–7329

    PubMed  CAS  Google Scholar 

  12. Ray CA, Black RA, Kronheim SR, Greenstreet TA, Sleath PR, Salvesen GS, Pickup DJ (1992) Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1 beta converting enzyme. Cell 69:597–604

    Article  PubMed  CAS  Google Scholar 

  13. Allen IC, Scull MA, Moore CB, Holl EK, McElvania-TeKippe E, Taxman DJ, Guthrie EH, Pickles RJ, Ting JP (2009) The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30:556–565

    Article  PubMed  CAS  Google Scholar 

  14. Thomas PG, Dash P, Aldridge JR Jr, Ellebedy AH, Reynolds C, Funk AJ, Martin WJ, Lamkanfi M, Webby RJ, Boyd KL et al (2009) The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity 30:566–575

    Article  PubMed  CAS  Google Scholar 

  15. Dinarello CA, Novick D, Puren AJ, Fantuzzi G, Shapiro L, Muhl H, Yoon DY, Reznikov LL, Kim SH, Rubinstein M (1998) Overview of interleukin-18: more than an interferon-gamma inducing factor. J Leukoc Biol 63:658–664

    PubMed  CAS  Google Scholar 

  16. Fernandes-Alnemri T, Wu J, Yu JW, Datta P, Miller B, Jankowski W, Rosenberg S, Zhang J, Alnemri ES (2007) The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 14:1590–1604

    Article  PubMed  CAS  Google Scholar 

  17. Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J (1993) Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75:653–660

    Article  PubMed  CAS  Google Scholar 

  18. Pirhonen J, Sareneva T, Julkunen I, Matikainen S (2001) Virus infection induces proteolytic processing of IL-18 in human macrophages via caspase-1 and caspase-3 activation. Eur J Immunol 31:726–733

    Article  PubMed  CAS  Google Scholar 

  19. Kanneganti TD, Body-Malapel M, Amer A, Park JH, Whitfield J, Franchi L, Taraporewala ZF, Miller D, Patton JT, Inohara N et al (2006) Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J Biol Chem 281:36560–36568

    Article  PubMed  CAS  Google Scholar 

  20. Ichinohe T, Lee HK, Ogura Y, Flavell R, Iwasaki A (2009) Inflammasome recognition of influenza virus is essential for adaptive immune responses. J Exp Med 206:79–87

    Article  PubMed  CAS  Google Scholar 

  21. Delaloye J, Roger T, Steiner-Tardivel QG, Le Roy D, Knaup Reymond M, Akira S, Petrilli V, Gomez CE, Perdiguero B, Tschopp J et al (2009) Innate immune sensing of modified vaccinia virus Ankara (MVA) is mediated by TLR2-TLR6, MDA-5 and the NALP3 inflammasome. PLoS Pathog 5:e1000480

    Article  PubMed  Google Scholar 

  22. Poeck H, Bscheider M, Gross O, Finger K, Roth S, Rebsamen M, Hannesschlager N, Schlee M, Rothenfusser S, Barchet W et al (2009) Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat Immunol 11:63–69

    Article  PubMed  Google Scholar 

  23. Schmitz N, Kurrer M, Bachmann MF, Kopf M (2005) Interleukin-1 is responsible for acute lung immunopathology but increases survival of respiratory influenza virus infection. J Virol 79:6441–6448

    Article  PubMed  CAS  Google Scholar 

  24. Muruve DA, Petrilli V, Zaiss AK, White LR, Clark SA, Ross PJ, Parks RJ, Tschopp J (2008) The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452:103–107

    Article  PubMed  CAS  Google Scholar 

  25. Benko S, Philpott DJ, Girardin SE (2008) The microbial and danger signals that activate Nod-like receptors. Cytokine 43:368–373

    Article  PubMed  CAS  Google Scholar 

  26. Cassel SL, Joly S, Sutterwala FS (2009) The NLRP3 inflammasome: a sensor of immune danger signals. Semin Immunol 21:194–198

    Article  PubMed  CAS  Google Scholar 

  27. Bryant C, Fitzgerald KA (2009) Molecular mechanisms involved in inflammasome activation. Trends Cell Biol 19:455–464

    Article  PubMed  CAS  Google Scholar 

  28. Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677

    Article  PubMed  CAS  Google Scholar 

  29. Corasaniti MT, Strongoli MC, Piccirilli S, Nistico R, Costa A, Bilotta A, Turano P, Finazzi-Agro A, Bagetta G (2000) Apoptosis induced by gp120 in the neocortex of rat involves enhanced expression of cyclooxygenase type 2 and is prevented by NMDA receptor antagonists and by the 21-aminosteroid U-74389G. Biochem Biophys Res Commun 274:664–669

    Article  PubMed  CAS  Google Scholar 

  30. Franchi L, Kanneganti TD, Dubyak GR, Nunez G (2007) Differential requirement of P2X7 receptor and intracellular K+ for caspase-1 activation induced by intracellular and extracellular bacteria. J Biol Chem 282:18810–18818

    Article  PubMed  CAS  Google Scholar 

  31. Petrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J (2007) Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 14:1583–1589

    Article  PubMed  CAS  Google Scholar 

  32. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9:857–865

    Article  PubMed  CAS  Google Scholar 

  33. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9:847–856

    Article  PubMed  CAS  Google Scholar 

  34. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241

    Article  PubMed  CAS  Google Scholar 

  35. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11:136–140

    Article  PubMed  CAS  Google Scholar 

  36. Imamura M, Tsutsui H, Yasuda K, Uchiyama R, Yumikura-Futatsugi S, Mitani K, Hayashi S, Akira S, Taniguchi S, Van Rooijen N et al (2009) Contribution of TIR domain-containing adapter inducing IFN-beta-mediated IL-18 release to LPS-induced liver injury in mice. J Hepatol 51:333–341

    Article  PubMed  CAS  Google Scholar 

  37. Kanneganti TD, Ozoren N, Body-Malapel M, Amer A, Park JH, Franchi L, Whitfield J, Barchet W, Colonna M, Vandenabeele P et al (2006) Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440:233–236

    Article  PubMed  CAS  Google Scholar 

  38. Maitra R, Clement CC, Scharf B, Crisi GM, Chitta S, Paget D, Purdue PE, Cobelli N, Santambrogio L (2009) Endosomal damage and TLR2 mediated inflammasome activation by alkane particles in the generation of aseptic osteolysis. Mol Immunol 47:175–184

    Article  PubMed  CAS  Google Scholar 

  39. Meylan E, Tschopp J, Karin M (2006) Intracellular pattern recognition receptors in the host response. Nature 442:39–44

    Article  PubMed  CAS  Google Scholar 

  40. Ogura Y, Sutterwala FS, Flavell RA (2006) The inflammasome: first line of the immune response to cell stress. Cell 126:659–662

    Article  PubMed  CAS  Google Scholar 

  41. Kanneganti TD, Lamkanfi M, Kim YG, Chen G, Park JH, Franchi L, Vandenabeele P, Nunez G (2007) Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 26:433–443

    Article  PubMed  CAS  Google Scholar 

  42. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082

    Article  PubMed  CAS  Google Scholar 

  43. Piccini A, Carta S, Tassi S, Lasiglie D, Fossati G, Rubartelli A (2008) ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1beta and IL-18 secretion in an autocrine way. Proc Natl Acad Sci USA 105:8067–8072

    Article  PubMed  CAS  Google Scholar 

  44. Schroder K, Zhou R, Tschopp J (2010) The NLRP3 inflammasome: a sensor for metabolic danger? Science 327:296–300

    Article  PubMed  CAS  Google Scholar 

  45. Guillot L, Le Goffic R, Bloch S, Escriou N, Akira S, Chignard M, Si-Tahar M (2005) Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J Biol Chem 280:5571–5580

    Article  PubMed  CAS  Google Scholar 

  46. Koyama S, Ishii KJ, Kumar H, Tanimoto T, Coban C, Uematsu S, Kawai T, Akira S (2007) Differential role of TLR- and RLR-signaling in the immune responses to influenza A virus infection and vaccination. J Immunol 179:4711–4720

    PubMed  CAS  Google Scholar 

  47. Heer AK, Shamshiev A, Donda A, Uematsu S, Akira S, Kopf M, Marsland BJ (2007) TLR signaling fine-tunes anti-influenza B cell responses without regulating effector T cell responses. J Immunol 178:2182–2191

    PubMed  CAS  Google Scholar 

  48. Le Goffic R, Balloy V, Lagranderie M, Alexopoulou L, Escriou N, Flavell R, Chignard M, Si-Tahar M (2006) Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS Pathog 2:e53

    Article  PubMed  Google Scholar 

  49. Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, Ban T, Lu Y, Miyagishi M, Kodama T, Honda K et al (2007) DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448:501–505

    Article  PubMed  CAS  Google Scholar 

  50. Wang Z, Choi MK, Ban T, Yanai H, Negishi H, Lu Y, Tamura T, Takaoka A, Nishikura K, Taniguchi T (2008) Regulation of innate immune responses by DAI (DLM-1/ZBP1) and other DNA-sensing molecules. Proc Natl Acad Sci USA 105:5477–5482

    Article  PubMed  CAS  Google Scholar 

  51. Burckstummer T, Baumann C, Bluml S, Dixit E, Durnberger G, Jahn H, Planyavsky M, Bilban M, Colinge J, Bennett KL et al (2009) An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 10:266–272

    Article  PubMed  Google Scholar 

  52. Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458:509–513

    Article  PubMed  CAS  Google Scholar 

  53. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E, Fitzgerald KA (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514–518

    Article  PubMed  CAS  Google Scholar 

  54. Schroder K, Muruve DA, Tschopp J (2009) Innate immunity: cytoplasmic DNA sensing by the AIM2 inflammasome. Curr Biol 19:R262–R265

    Article  PubMed  CAS  Google Scholar 

  55. Schlee M, Hartmann E, Coch C, Wimmenauer V, Janke M, Barchet W, Hartmann G (2009) Approaching the RNA ligand for RIG-I? Immunol Rev 227:66–74

    Article  PubMed  CAS  Google Scholar 

  56. Yoneyama M, Fujita T (2009) RNA recognition and signal transduction by RIG-I-like receptors. Immunol Rev 227:54–65

    Article  PubMed  CAS  Google Scholar 

  57. Rintahaka J, Wiik D, Kovanen PE, Alenius H, Matikainen S (2008) Cytosolic antiviral RNA recognition pathway activates caspases 1 and 3. J Immunol 180:1749–1757

    PubMed  CAS  Google Scholar 

  58. Bagetta G, Corasaniti MT, Berliocchi L, Nistico R, Giammarioli AM, Malorni W, Aloe L, Finazzi-Agro A (1999) Involvement of interleukin-1beta in the mechanism of human immunodeficiency virus type 1 (HIV-1) recombinant protein gp120-induced apoptosis in the neocortex of rat. Neuroscience 89:1051–1066

    Article  PubMed  CAS  Google Scholar 

  59. Corasaniti MT, Bilotta A, Strongoli MC, Navarra M, Bagetta G, Di Renzo G (2001) HIV-1 coat protein gp120 stimulates interleukin-1beta secretion from human neuroblastoma cells: evidence for a role in the mechanism of cell death. Br J Pharmacol 134:1344–1350

    Article  PubMed  CAS  Google Scholar 

  60. Corasaniti MT, Turano P, Bilotta A, Malorni W, Stringaro AR, Nistico R, Finazzi-Agro A, Bagetta G (2001) Evidence that increases of mitochondrial immunoreactive IL-1beta by HIV-1 gp120 implicate in situ cleavage of pro-IL-1beta in the neocortex of rat. J Neurochem 78:611–618

    Article  PubMed  CAS  Google Scholar 

  61. Corasaniti MT, Russo R, Amantea D, Gliozzi M, Siviglia E, Stringaro AR, Malorni W, Melino G, Bagetta G (2005) Neuroprotection by the caspase-1 inhibitor Ac-YVAD-(acyloxy)mk in experimental neuroAIDS is independent from IL-1beta generation. Cell Death Differ 12(Suppl 1):999–1001

    Article  PubMed  CAS  Google Scholar 

  62. Corasaniti MT, Bellizzi C, Russo R, Colica C, Amantea D, Di Renzo G (2003) Caspase-1 inhibitors abolish deleterious enhancement of COX-2 expression induced by HIV-1 gp120 in human neuroblastoma cells. Toxicol Lett 139:213–219

    Article  PubMed  CAS  Google Scholar 

  63. Corasaniti MT, Melino G, Navarra M, Garaci E, Finazzi-Agro A, Nistico G (1995) Death of cultured human neuroblastoma cells induced by HIV-1 gp120 is prevented by NMDA receptor antagonists and inhibitors of nitric oxide and cyclooxygenase. Neurodegeneration 4:315–321

    Article  PubMed  CAS  Google Scholar 

  64. Catani MV, Corasaniti MT, Navarra M, Nistico G, Finazzi-Agro A, Melino G (2000) gp120 induces cell death in human neuroblastoma cells through the CXCR4 and CCR5 chemokine receptors. J Neurochem 74:2373–2379

    Article  PubMed  CAS  Google Scholar 

  65. Corasaniti MT, Piccirilli S, Paoletti A, Nistico R, Stringaro A, Malorni W, Finazzi-Agro A, Bagetta G (2001) Evidence that the HIV-1 coat protein gp120 causes neuronal apoptosis in the neocortex of rat via a mechanism involving CXCR4 chemokine receptor. Neurosci Lett 312:67–70

    Article  PubMed  CAS  Google Scholar 

  66. Sergerie Y, Rivest S, Boivin G (2007) Tumor necrosis factor-alpha and interleukin-1 beta play a critical role in the resistance against lethal herpes simplex virus encephalitis. J Infect Dis 196:853–860

    Article  PubMed  CAS  Google Scholar 

  67. Krzyzowska M, Cymerys J, Winnicka A, Niemialtowski M (2006) Involvement of Fas and FasL in Ectromelia virus-induced apoptosis in mouse brain. Virus Res 115:141–149

    Article  PubMed  CAS  Google Scholar 

  68. Das S, Mishra MK, Ghosh J, Basu A (2008) Japanese Encephalitis Virus infection induces IL-18 and IL-1beta in microglia and astrocytes: correlation with in vitro cytokine responsiveness of glial cells and subsequent neuronal death. J Neuroimmunol 195:60–72

    Article  PubMed  CAS  Google Scholar 

  69. Byrne SN, Halliday GM, Johnston LJ, King NJ (2001) Interleukin-1beta but not tumor necrosis factor is involved in West Nile virus-induced Langerhans cell migration from the skin in C57BL/6 mice. J Invest Dermatol 117:702–709

    Article  PubMed  CAS  Google Scholar 

  70. Manigold T, Bocker U, Chen J, Gundt J, Traber P, Singer MV, Rossol S (2003) Hepatitis B core antigen is a potent inductor of interleukin-18 in peripheral blood mononuclear cells of healthy controls and patients with hepatitis B infection. J Med Virol 71:31–40

    Article  PubMed  CAS  Google Scholar 

  71. Takeuchi R, Tsutsumi H, Osaki M, Sone S, Imai S, Chiba S (1998) Respiratory syncytial virus infection of neonatal monocytes stimulates synthesis of interferon regulatory factor 1 and interleukin-1beta (IL-1beta)-converting enzyme and secretion of IL-1beta. J Virol 72:837–840

    PubMed  CAS  Google Scholar 

  72. Johnston JB, Rahman MM, McFadden G (2007) Strategies that modulate inflammasomes: insights from host-pathogen interactions. Semin Immunopathol 29:261–274

    Article  PubMed  CAS  Google Scholar 

  73. Seet BT, Johnston JB, Brunetti CR, Barrett JW, Everett H, Cameron C, Sypula J, Nazarian SH, Lucas A, McFadden G (2003) Poxviruses and immune evasion. Annu Rev Immunol 21:377–423

    Article  PubMed  CAS  Google Scholar 

  74. Dorfleutner A, Talbott SJ, Bryan NB, Funya KN, Rellick SL, Reed JC, Shi X, Rojanasakul Y, Flynn DC, Stehlik C (2007) A Shope Fibroma virus PYRIN-only protein modulates the host immune response. Virus Genes 35:685–694

    Article  PubMed  CAS  Google Scholar 

  75. Johnston JB, Barrett JW, Nazarian SH, Goodwin M, Ricciuto D, Wang G, McFadden G (2005) A poxvirus-encoded pyrin domain protein interacts with ASC-1 to inhibit host inflammatory and apoptotic responses to infection. Immunity 23:587–598

    Article  PubMed  CAS  Google Scholar 

  76. Benedict CA, Ware CF (2005) Poxviruses aren’t stuPYD. Immunity 23:553–555

    Article  PubMed  CAS  Google Scholar 

  77. Qu Y, Ramachandra L, Mohr S, Franchi L, Harding CV, Nunez G, Dubyak GR (2009) P2X7 receptor-stimulated secretion of MHC class II-containing exosomes requires the ASC/NLRP3 inflammasome but is independent of caspase-1. J Immunol 182:5052–5062

    Article  PubMed  CAS  Google Scholar 

  78. Willingham SB, Allen IC, Bergstralh DT, Brickey WJ, Huang MT, Taxman DJ, Duncan JA, Ting JP (2009) NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. J Immunol 183:2008–2015

    Article  PubMed  CAS  Google Scholar 

  79. Willingham SB, Bergstralh DT, O’Connor W, Morrison AC, Taxman DJ, Duncan JA, Barnoy S, Venkatesan MM, Flavell RA, Deshmukh M et al (2007) Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/cryopyrin/NLRP3 and ASC. Cell Host Microbe 2:147–159

    Article  PubMed  CAS  Google Scholar 

  80. Kolly L, Karababa M, Joosten LA, Narayan S, Salvi R, Petrilli V, Tschopp J, van den Berg WB, So AK, Busso N (2009) Inflammatory role of ASC in antigen-induced arthritis is independent of caspase-1, NALP-3, and IPAF. J Immunol 183:4003–4012

    Article  PubMed  CAS  Google Scholar 

  81. Komiyama T, Ray CA, Pickup DJ, Howard AD, Thornberry NA, Peterson EP, Salvesen G (1994) Inhibition of interleukin-1 beta converting enzyme by the cowpox virus serpin CrmA. An example of cross-class inhibition. J Biol Chem 269:19331–19337

    PubMed  CAS  Google Scholar 

  82. MacNeill AL, Moldawer LL, Moyer RW (2009) The role of the cowpox virus crmA gene during intratracheal and intradermal infection of C57BL/6 mice. Virology 384:151–160

    Article  PubMed  CAS  Google Scholar 

  83. Petit F, Bertagnoli S, Gelfi J, Fassy F, Boucraut-Baralon C, Milon A (1996) Characterization of a myxoma virus-encoded serpin-like protein with activity against interleukin-1 beta-converting enzyme. J Virol 70:5860–5866

    PubMed  CAS  Google Scholar 

  84. Messud-Petit F, Gelfi J, Delverdier M, Amardeilh MF, Py R, Sutter G, Bertagnoli S (1998) Serp2, an inhibitor of the interleukin-1beta-converting enzyme, is critical in the pathobiology of myxoma virus. J Virol 72:7830–7839

    PubMed  CAS  Google Scholar 

  85. Kettle S, Alcami A, Khanna A, Ehret R, Jassoy C, Smith GL (1997) Vaccinia virus serpin B13R (SPI-2) inhibits interleukin-1beta-converting enzyme and protects virus-infected cells from TNF- and Fas-mediated apoptosis, but does not prevent IL-1beta-induced fever. J Gen Virol 78(Pt 3):677–685

    PubMed  CAS  Google Scholar 

  86. Kettle S, Blake NW, Law KM, Smith GL (1995) Vaccinia virus serpins B13R (SPI-2) and B22R (SPI-1) encode M(r) 38.5 and 40K, intracellular polypeptides that do not affect virus virulence in a murine intranasal model. Virology 206:136–147

    Article  PubMed  CAS  Google Scholar 

  87. Smith VP, Bryant NA, Alcami A (2000) Ectromelia, vaccinia and cowpox viruses encode secreted interleukin-18-binding proteins. J Gen Virol 81:1223–1230

    PubMed  CAS  Google Scholar 

  88. Chantrey J, Meyer H, Baxby D, Begon M, Bown KJ, Hazel SM, Jones T, Montgomery WI, Bennett M (1999) Cowpox: reservoir hosts and geographic range. Epidemiol Infect 122:455–460

    Article  PubMed  CAS  Google Scholar 

  89. Stasakova J, Ferko B, Kittel C, Sereinig S, Romanova J, Katinger H, Egorov A (2005) Influenza A mutant viruses with altered NS1 protein function provoke caspase-1 activation in primary human macrophages, resulting in fast apoptosis and release of high levels of interleukins 1beta and 18. J Gen Virol 86:185–195

    Article  PubMed  CAS  Google Scholar 

  90. Lam WY, Tang JW, Yeung AC, Chiu LC, Sung JJ, Chan PK (2008) Avian influenza virus A/HK/483/97(H5N1) NS1 protein induces apoptosis in human airway epithelial cells. J Virol 82:2741–2751

    Article  PubMed  CAS  Google Scholar 

  91. Cilloniz C, Shinya K, Peng X, Korth MJ, Proll SC, Aicher LD, Carter VS, Chang JH, Kobasa D, Feldmann F et al (2009) Lethal influenza virus infection in macaques is associated with early dysregulation of inflammatory related genes. PLoS Pathog 5:e1000604

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors’ own work is supported by NIH (AR056296), a Cancer Center Support Grant (CCSG 2 P30 CA 21765), Centers of Excellence for Influenza Research and Surveillance (CEIRS) project, and the American Lebanese Syrian Associated Charities (to T-D. K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thirumala-Devi Kanneganti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel

About this chapter

Cite this chapter

Lupfer, C.R., Kanneganti, TD. (2011). The Role of Inflammasomes in Viral Infection. In: Couillin, I., Pétrilli, V., Martinon, F. (eds) The Inflammasomes. Progress in Inflammation Research. Springer, Basel. https://doi.org/10.1007/978-3-0348-0148-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0148-5_4

  • Published:

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0348-0147-8

  • Online ISBN: 978-3-0348-0148-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics