Skip to main content

Spatial Separation of Large Earthquakes, Aftershocks, and Background Seismicity: Analysis of Interseismic and Coseismic Seismicity Patterns in Southern California

  • Chapter
Seismogenesis and Earthquake Forecasting: The Frank Evison Volume II

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

We associate waveform-relocated background seismicity and aftershocks with the 3-D shapes of late Quaternary fault zones in southern California. Major earthquakes that can slip more than several meters, aftershocks, and near-fault background seismicity mostly rupture different surfaces within these fault zones. Major earthquakes rupture along the mapped traces of the late Quaternary faults, called the principal slip zones (PSZs). Aftershocks occur either on or in the immediate vicinity of the PSZs, typically within zones that are ±2-km wide. In contrast, the near-fault background seismicity is mostly accommodated on a secondary heterogeneous network of small slip surfaces, and forms spatially decaying distributions extending out to distances of ±10 km from the PSZs. We call the regions where the enhanced rate of background seismicity occurs, the seismic damage zones. One possible explanation for the presence of the seismic damage zones and associated seismicity is that the damage develops as faults accommodate bends and geometrical irregularities in the PSZs. The seismic damage zones mature and reach their finite width early in the history of a fault, during the first few kilometers of cumulative offset. Alternatively, the similarity in width of seismic damage zones suggests that most fault zones are of almost equal strength, although the amount of cumulative offset varies widely. It may also depend on the strength of the fault zone, the time since the last major earthquake as well as other parameters. In addition, the seismic productivity appears to be influenced by the crustal structure and heat flow, with more extensive fault networks in regions of thin crust and high heat flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ando, R. and Yamashita, T. (2007), Effects of mesoscopic-scale fault structure on dynamic earthquake ruptures: Dynamic formation of geometrical complexity of earthquake faults, J. Geophys. Res. 112, B09303, doi:10.1029/2006JB004612.

    Article  Google Scholar 

  • Ben-Zion, Y. and Lyakhovsky, V. (2006), Analysis of aftershocks in a lithospheric model with seismogenic zone governed by damage rheology, Geophys. J. Int. 165, 197–210 doi: 10.1111/j.1365-246X.2006.02878.x.

    Article  Google Scholar 

  • Chambon, G., Schmittbuhl, J., Corfdir, A., Orellana, N., Diraison, M. and Géraud, Y. (2006), The thickness of faults: From laboratory experiments to field-scale observations, Tectonophysics 426, 77–94.

    Article  Google Scholar 

  • Felzer, K.R. and Brodsky, E.E. (2006), Decay of aftershock density with distance indicates triggering by dynamic stress, Nature 441, 735–738.

    Article  Google Scholar 

  • Frankel, A.D. et al. (2002), Documentation for the 2002 Update of the National Seismic Hazard Maps, Tech. Rep. Open-File Report 02-420, US Geological Survey.

    Google Scholar 

  • Hardebeck, J.L. and Michael, A. (2006), Spatial and temporal stress inversion, J. Geophys. Res 111, B11310, doi: 10.1029/2005JB004144.

    Article  Google Scholar 

  • Helmstetter, A., Ouillon, G. and Sornette, D. (2003), Are aftershocks of large California earthquakes diffusing?, J. Geophys. Res. 108, doi:10:1029/2003JB002503.

    Google Scholar 

  • Jennings, C.W. (1994), Fault activity map of California and adjacent areas: California Department of Conservation, Division of Mines and Geology, Geologic Data Map No. 6, scale 1:750,000.

    Google Scholar 

  • Lin, G., Shearer, P.M. and Hauksson, E. (2007), Applying a three-dimensional velocity model, waveform cross correlation, and cluster analysis to locate southern California seismicity from 1981 to 2005, J. Geophys. Res. 112, B12309, doi:10.1029/2007 JB004986.

    Article  Google Scholar 

  • Liu, J., Sieh, K. and Hauksson, E. (2003), A structural interpretation of the aftershock “cloud” of the 1992 M w 7.3 Landers Earthquake, Bull. Seismol. Soc. Am. 93,3, 1333–1344.

    Article  Google Scholar 

  • Marsan, D. (2006), Can coseismic stress variability suppress seismicity shadows? Insights from a rate-and-state friction model, J. Geophys. Res. 111, B06305, doi:10.1029/2005 JB004060.

    Article  Google Scholar 

  • Nazareth, J.J. and Hauksson, E. (2004), The seismogenic thickness of the southern California crust, Bull. Seismol. Soc. Am. 94, 940–960.

    Article  Google Scholar 

  • Plesch, A., Shaw, J.H., Benson, C., Bryant, W.A., Carena, S., Cooke, M., Dolan, J., Fuis, G., Gath, E., Grant, L., Hauksson, E., Jordan, T., Kamerling, M., Legg, M., Lindvall, S., Magistrale, H., Nicholson, C., Niemi, N., Oskin, M., Perry, S., Planansky, G., Rockwell, T., Shearer, P., Sorlien, C., Süss, M.P., Suppe, J., Treiman, J., and Yeats, R. (2007), Community fault model (CFM) for southern California, Bull. Seismol. Soc. Am., Dec., 97, 1793–1802.

    Article  Google Scholar 

  • Press, H.W., Teukolsky. S.A., Vetterling, W.T. and Flannery, B.P., Numerical Recipes in Fortran 77, The Art of Scientific Computing, 2nd Edition, Vol. 1 (Cambridge University Press, New York, NY (1997)) 1447 pp.

    Google Scholar 

  • Provost, A.-S. and Houston, H. (2001), Orientation of the stress field surrounding the creeping section of the San Andreas Fault: Evidence for a narrow mechanically weak fault zone, J. Geophys. Res., 106,B6, 11,373–11,386.

    Article  Google Scholar 

  • Sagy, A., Brodsky, E.E. and Axen, G.J. (2007), Evolution of fault-surface roughness with slip, Geol. 35, 283–286.

    Article  Google Scholar 

  • Sieh, K., Jones, L.M., Hauksson, E., Hudnut, K., Eberhart-Phillips, D., Heaton, T.H., Hough, S., Hutton, K., Kanamori, H., Lilje, A., Lindvall, S., McGill, S.F., Mori, J., Rubin, C., Spotilla, J.A., Stock, J., Thio, H.K., Treiman, J., Wernicke, B. and Zachariasen, J. (1993), Near-field investigations of the Landers earthquake sequence April–July 1992, Science 260, 171–175.

    Article  Google Scholar 

  • Shaw, B.E. (2004), Variation of large elastodynamic earthquakes on complex fault systems, G. Res. Lett., 31, L18609, doi:10.1029/ 2004GL019943.

    Article  Google Scholar 

  • Shaw, B.E. (2006), Initiation propagation and termination of elastodynamic ruptures associated with segmentation of faults and shaking hazard, J. Geophys. Res. 111, B08302, doi:10.1029/ 2005JB004093.

    Article  Google Scholar 

  • Sibson, R.H. (2003), Thickness of the seismic slip zone, Bull. Seism. Soc. Am. 93,3. 1169–1178; doi:10.1785/0120020061.

    Article  Google Scholar 

  • Spotila, J., Niemi, A., Brady, R., House, M., Buscher, J. and Oskin, M. (2007), Long-term continental deformation associated with transpressive plate motion: The San Andreas fault, Geology 35,11, 967–970; doi:10.1130/G23816A.1

    Article  Google Scholar 

  • Utsu, T., Statistical Features of Seismicity, Int’l. Handbook of Earthquake and Engineering Seismology V. 81B: Centennial publication of the Intl’. Assn. of Seism. and Physics of the Earth’s Interior (P. Jennings, H. Kanamori, and W. Lee, eds), pp. 719–732 (2003).

    Google Scholar 

  • Wesnousky, S.G. (1990), Seismicity as a function of cumulative geologic offset: Some observations from southern California, Bull. Seism. Soc. Am. 80, 1374–1381.

    Google Scholar 

  • Wessel, P. and Smith, W.H.F. (1998), New version of the generic mapping tools released, EOS 79, 579.

    Article  Google Scholar 

  • Wesson, R.L., Bakun, W.H. and Perkins, D.M. (2003), Association of earthquakes and faults in the San Francisco Bay Area using Bayesian inference, Bull. Seismol. Soc. Am. 93, 1306–1322.

    Article  Google Scholar 

  • Wiemer, S. (2001), A software package to analyze seismicity: ZMAP, Seis. Res. Lett., 373–382.

    Google Scholar 

  • Woessner, J. and Hauksson, E. (2006), Associating Southern California seismicity with Late Quaternary Faults: Implications for Seismicity Parameters (abstract), Southern California Earthquake Center Annual Meeting, Palm Springs, CA.

    Google Scholar 

  • Wood, H.O. (1916), The earthquake problem in the Western United States, Bull. Seismol. Soc. Am. VI, 196–217.

    Google Scholar 

  • Zaliapin, I., Gabrielov, A., Keilis-Borok, V. and Wong, H. (2007), Aftershock identification, arXiv:0712.1303v1 [physics.geo-ph].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser / Springer Basel AG

About this chapter

Cite this chapter

Hauksson, E. (2010). Spatial Separation of Large Earthquakes, Aftershocks, and Background Seismicity: Analysis of Interseismic and Coseismic Seismicity Patterns in Southern California. In: Savage, M.K., Rhoades, D.A., Smith, E.G.C., Gerstenberger, M.C., Vere-Jones, D. (eds) Seismogenesis and Earthquake Forecasting: The Frank Evison Volume II. Pageoph Topical Volumes. Springer, Basel. https://doi.org/10.1007/978-3-0346-0500-7_10

Download citation

Publish with us

Policies and ethics