Skip to main content

Classical Live Viral Vaccines

  • Chapter
  • First Online:
Replicating Vaccines

Part of the book series: Birkhäuser Advances in Infectious Diseases ((BAID))

Abstract

Classical, live viral vaccines have been developed by adapting viruses by serial passages in animals, tissue or cell cultures during which multiple mutations in the viral genome have accumulated. The majority of vaccines in use today were developed in this way and a number of similar investigational vaccines are currently in development. The principal advantage of live vaccines is that they mimic natural infection and induce durable immunity, including cytotoxic T cell responses that are not generated by soluble proteins and inactivated vaccines. Recent studies of gene activation following a live vaccine (yellow fever 17D) have shed light on the role of innate immune responses in provoking strong, polyfunctional adaptive immunity following the administration of live vaccines. The principal disadvantage of live vaccines is that, occasionally, infection caused by the live vaccine causes adverse events resembling the parental (virulent) virus. Such events can be due to reversions in critical attenuating mutations or to host-specific susceptibility factors. The attenuating mutations in live vaccines increase the inapparent: apparent infection ratio compared to the parental virus, but overt infection (adverse events) while far less frequent than in natural infection can still occur. This problem is inconsequential for infections that are typically mild or self-limited, such as measles, mumps, rubella, and varicella, but can be devastating for infections that are frequently lethal such as yellow fever or in individuals who are immunocompromised. Despite these issues, live vaccines have had dramatic benefits in reducing the incidence of the most important infections of humankind, and in one case (smallpox) a live vaccine helped eradicate a viral disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sawyer WA, Kitchen SF, Lloyd W (1931) Vaccination of humans against yellow fever with immune serum and virus fixed for mice. Proc Soc Exp Biol Med 29:62–64

    Google Scholar 

  2. Theiler M, Smith HH (1937) The use of yellow fever virus modified by in vitro cultivation for human immunization. J Exp Med 65:787–800

    CAS  PubMed  Google Scholar 

  3. Smorodintsev AA, Tsushinky MD, Drobyshevskaya AI, Korovin AA (1937) Investigation on volunteers infected with the influenza virus. Am J Med Sci 194:159–170

    Google Scholar 

  4. Kolmer JA (1935) Susceptibility and immunity in relation to vaccination in acute anterior poliomyelitis. JAMA 105:1956–1963

    Google Scholar 

  5. Wyand MS, Manson K, Montefiori DC, Lifson JD, Johnson RP, Desrosiers RC (1999) Protection by live, attenuated simian immunodeficiency virus against heterologous challenge. J Virol 73:8356–8363

    CAS  PubMed  Google Scholar 

  6. Norrby E (2007) Historical Feature. Yellow fever and Max Theiler: the only Nobel Prize for a virus vaccine. J Exp Med 204:2779–2784

    CAS  PubMed  Google Scholar 

  7. Koprowski H (1955) Immunization of man with living poliomyelitis virus. Monogr Ser World Health Organ 26:335–356

    CAS  PubMed  Google Scholar 

  8. Enders JF, Katz SL, Milovanovic MV, Holloway A (1960) Studies on an attenuated measles virus-vaccine. 1. Development and preparation of the vaccine: techniques for assay of effects of vaccination. N Engl J Med 263:153–159

    CAS  PubMed  Google Scholar 

  9. Maassab HF, DeBorde DC (1985) Development and characterization of cold-adapted viruses for use as live virus vaccines. Vaccine 3:355–369

    CAS  PubMed  Google Scholar 

  10. Theiler M, Smith HH (1937) Effect of prolonged cultivation in vitro upon pathogenicity of yellow fever virus. J Exp Med 65:767–786

    CAS  PubMed  Google Scholar 

  11. Stokes J Jr, Weibel RE, Buynak EB, Hilleman MR (1967) Live attenuated mumps virus vaccine. II. Early clinical studies. Pediatrics 39:363–371

    PubMed  Google Scholar 

  12. Monath TP, Cetron M, Teuwen D (2008) Yellow fever. In: Plotkin S, Orenstein W, Offit P (eds) Vaccines, 5th edn. Saunders Elsevier, Philadelphia, pp 959–1055

    Google Scholar 

  13. Gomi Y, Sunamachi H, Mori Y, Nagaike K, Takahashi M, Yamanishi K (2003) Comparison of the complete DNA sequences of the Oka varicella vaccine and its parental viruses. J Virol 77:3351

    CAS  Google Scholar 

  14. Kakizawa J, Nitta Y, Yamashita T, Ushijima H, Katow S (2001) Mutations of rubella virus vaccine TO-336 strain occurred in the attenuation process of wild progenitor virus. Vaccine 19:2793–2802

    CAS  PubMed  Google Scholar 

  15. Ren R, Moss EG, Racaniello VR (1991) Identification of two determinants that attenuate vaccine-related type 2 poliovirus. J Virol 65:1377–1382

    CAS  PubMed  Google Scholar 

  16. Omata T, Kohara M, Kuge S, Komatsu T, Abe S, Semler BL, Kameda A, Itoh H, Arita M, Wimmer E (1986) Genetic analysis of the attenuation phenotype of poliovirus type 1. J Virol 58:348–358

    CAS  PubMed  Google Scholar 

  17. Monath TP, Nichols R, Archambault WT, Moore L, Marchesani R, Tian J, Shope RE, Thomas N, Schrader R, Furby D, Bedford P (2002) Comparative safety and immunogenicity of two yellow fever 17D vaccines (ARILVAX™ and YF-VAX®) in a Phase III multicenter, double-blind clinical trial. Am J Trop Med Hyg 66:533–541

    CAS  PubMed  Google Scholar 

  18. Monath TP (1971) Neutralizing antibody responses in the major immunoglobulin classes to yellow fever 17D vaccination of humans. Am J Epidemiol 93:122–129

    CAS  PubMed  Google Scholar 

  19. Poland JD, Calisher CH, Monath TP, Downs WG, Murphy K (1981) Persistence of neutralizing antibody 30-35 years after immunization with 17D yellow fever vaccine. Bull World Health Organ 59:895–900

    CAS  PubMed  Google Scholar 

  20. Miller JD, van der Most RG, Akondy RS, Glidewell JT, Albott S, Masopust D, Murali-Krishna K, Mahar PL, Edupuganti S, Lalor S, Germon S, Del Rio C, Mulligan MJ, Staprans SI, Altman JD, Feinberg MB, Ahmed R (2008) Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity 28:710–722

    CAS  PubMed  Google Scholar 

  21. Scherer CA, Magness CL, Steiger KV, Poitinger ND, Caputo CM, Miner DG, Winokur PL, Klinzman D, McKee J, Pilar C, Ward PA, Gillham MH, Haulman NJ, Stapleton JT, Iadonato SP (2007) Distinct gene expression profiles in peripheral blood mononuclear cells from patients infected with vaccinia virus, yellow fever 17D virus, or upper respiratory infections. Vaccine 25:6458–6473

    CAS  PubMed  Google Scholar 

  22. Querec TD, Akindy RS, Lee EK, Cao W, Nakaya HI, Teuwen D, Pirani A, Gernert K, Deng J, Marzolf B, Kennedy K, Wu H, Bennouna S, Oluoch H, Miller J, Vencio RZ, Mulligan M, Aderem A, Ahmed R, Pulendran B (2009) Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol 10:116–125

    CAS  PubMed  Google Scholar 

  23. Gaucher D, Therrien R, Kettaf N, Angermann BR, Boucher G, Filali-Mouhim A, Moser JM, Mehta RS, Drake DR 3rd, Castro E, Akondy R, Rinfret A, Yassine-Diab B, Said EA, Chouikh Y, Cameron MJ, Clum R, Kelvin D, Somogyi R, Greller LD, Balderas RS, Wilkinson P, Pantaleo G, Tartaglia J, Haddad EK, Sékaly RP (2008) Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. J Exp Med 205:3119–3131

    CAS  PubMed  Google Scholar 

  24. Barba-Spaeth G, Longman RS, Albert ML, Rice CM (2005) Live attenuated yellow fever 17D infects human DCs and allows for presentation of endogenous and recombinant T cell epitopes. J Exp Med 202:1179–1184

    CAS  PubMed  Google Scholar 

  25. Palmer DR, Fernandez S, Bisbing J, Peachman KK, Rao M, Barvir D, Gunther V, Burgess T, Kohno Y, Padmanabhan R, Sun W (2007) Restricted replication and lysosomal trafficking of yellow fever 17D vaccine virus in human dendritic cells. J Gen Virol 88:148–156

    CAS  PubMed  Google Scholar 

  26. Querec T, Bennouna S, Alkan S, Laouar Y, Gorden K, Flavell R, Akira S, Ahmed R, Pulendran B (2006) Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J Exp Med 203:413–424

    PubMed  Google Scholar 

  27. Treanor JJ, Kotloff K, Betts RF, Belshe R, Newman F, Iacuzio D, Wittes J, Bryant M (1999) Evaluation of trivalent, live, cold-adapted (CAIV-T) and inactivated (TIV) influenza vaccines in prevention of virus infection and illness following challenge of adults with wild-type influenza A (H1N1), A (H3N2), and B viruses. Vaccine 18:899–906

    CAS  PubMed  Google Scholar 

  28. He XS, Holmes TH, Zhang C, Mahmood K, Kemble GW, Lewis DB, Dekker CL, Greenberg HB, Arvin AM (2006) Cellular immune responses in children and adults receiving inactivated or live attenuated influenza vaccines. J Virol 80:11756–11766

    CAS  PubMed  Google Scholar 

  29. Belshe RB, Gruber WC, Mendelman PM, Mehta HB, Mahmood K, Reisinger K, Treanor J, Zangwill K, Hayden FG, Bernstein DI, Kotloff K, King J, Piedra PA, Block SL, Yan L, Wolff M (2000) Correlates of immune protection induced by live, attenuated, cold-adapted, trivalent, intranasal influenza virus vaccine. J Infect Dis 181:1133–1137

    CAS  PubMed  Google Scholar 

  30. Kaul D, Ogra PL (1998) Mucosal responses to parenteral and mucosal vaccines. Dev Biol Stand 95:141–146

    CAS  PubMed  Google Scholar 

  31. Bellanti JA, Zeligs BJ, Mendez-Inocencio J, García-Garcia ML, Islas-Romero R, Omidvar B, Omidvar J, Kim G, Fernandez De Castro J, Sepulveda Amor J, Walls L, Bellini WJ, Valdespino-Gomez JL (2004) Immunologic studies of specific mucosal and systemic immune responses in Mexican school children after booster aerosol or subcutaneous immunization with measles vaccine. Vaccine 22:1214–1220

    CAS  PubMed  Google Scholar 

  32. World Health Organization (1987) Poliomyelitis in 1985–1989. Wkly Epidemiol Rec 62:273–280

    Google Scholar 

  33. Duclos P, Okwo-Bele JM, Gacic-Dobo M, Cherian T (2009) Global immunization: status, progress, challenges and future. BMC Int Health Hum Rights 9(Suppl 1):S2

    PubMed  Google Scholar 

  34. Patriarca PA, Wright PF, John TJ (1991) Factors affecting the immunogenicity of oral poliovirus in developing countries: review. Rev Infect Dis 13:926–939

    CAS  PubMed  Google Scholar 

  35. Watson JC, Hadler SC, Dykewicz CA, Reef S, Phillips L (1998) Measles, mumps, and rubella–vaccine use and strategies for elimination of measles, rubella, and congenital rubella syndrome and control of mumps: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 47(RR-8):1–57

    CAS  PubMed  Google Scholar 

  36. Frey SE, Newman FK, Kennedy JS, Ennis F, Abate G, Hoft DF, Monath TP (2009) Comparison of the safety and immunogenicity of ACAM1000, ACAM2000 and Dryvax in healthy vaccinia-naive adults. Vaccine 27:1637–1644

    CAS  PubMed  Google Scholar 

  37. Stark JH, Frey SE, Blum PS, Monath TP (2006) Lack of transmission of vaccinia virus. Emerg Infect Dis 12:698–700

    PubMed  Google Scholar 

  38. Benyesh-Melnick M, Melnick JL, Rawls WE, Wimberly I, Oro JB, Ben-Porath E, Rennick V (1967) Studies of the immunogenicity, communicability and genetic stability of oral poliovaccine administered during the winter. Am J Epidemiol 86:112–136

    CAS  PubMed  Google Scholar 

  39. MacLennan C, Dunn G, Huissoon AP, Kumararatne DS, Martin J, O'Leary P, Thompson RA, Osman H, Wood P, Minor P, Wood DJ, Pillay D (2004) Failure to clear persistent vaccine-derived neurovirulent poliovirus infection in an immunodeficient man. Lancet 363:1509–1513

    PubMed  Google Scholar 

  40. To KK, Chan KH, Li IW, Tsang TY, Tse H, Chan JF, Hung IF, Lai ST, Leung CW, Kwan YW, Lau YL, Ng TK, Cheng VC, Peiris JS, Yuen KY (2010) Viral load in patients infected with pandemic H1N1 2009 influenza A virus. J Med Virol 82:1–7

    PubMed  Google Scholar 

  41. Hammitt LL, Bartlett JP, Li S, Rahkola J, Lang N, Janoff EN, Levin MJ, Weinberg A (2009) Kinetics of viral shedding and immune responses in adults following administration of cold-adapted influenza vaccine. Vaccine 27:7359–7366

    CAS  PubMed  Google Scholar 

  42. Murphy BR, Rennels MB, Douglas RG Jr, Betts RF, Couch RB, Cate TR Jr, Chanock RM, Kendal AP, Maassab HF, Suwanagool S, Sotman SB, Cisneros LA, Anthony WC, Nalin DR, Levine MM (1980) Evaluation of influenza A/Hong Kong/123/77 (H1N1) ts-1A2 and cold-adapted recombinant viruses in seronegative adult volunteers. Infect Immun 29:348–355

    CAS  PubMed  Google Scholar 

  43. Morfin F, Beguin A, Lina B, Thouvenot D (2002) Detection of measles vaccine in the throat of a vaccinated child. Vaccine 20:1541–1543

    PubMed  Google Scholar 

  44. Permar SR, Moss WJ, Ryon JJ, Monze M, Cutts F, Quinn TC, Griffin DE (2001) Prolonged measles virus shedding in human immunodeficiency virus-infected children, detected by reverse transcriptase-polymerase chain reaction. J Infect Dis 183:532–538

    CAS  PubMed  Google Scholar 

  45. Rota PA, Khan AS, Durigon E, Yuran T, Villamarzo YS, Bellini WJ (1995) Detection of measles virus RNA in urine specimens from vaccine recipients. J Clin Microbiol 33:2485–2488

    CAS  PubMed  Google Scholar 

  46. Polgreen PM, Bohnett LC, Cavanaugh JE, Gingerich SB, Desjardin LE, Harris ML, Quinlisk MP, Pentella MA (2008) The duration of mumps virus shedding after the onset of symptoms. Clin Infect Dis 46:1447–1449

    PubMed  Google Scholar 

  47. Sawada H, Yano S, Oka Y, Togashi T (1993) Transmission of Urabe mumps vaccine between siblings. Lancet 342:371

    CAS  PubMed  Google Scholar 

  48. Atrasheuskaya AV, Neverov AA, Rubin S, Ignatyev GM (2006) Horizontal transmission of the Leningrad-3 live attenuated mumps vaccine virus. Vaccine 24:1530–1536

    CAS  PubMed  Google Scholar 

  49. Tsolia M, Gershon AA, Steinberg SP, Gelb L (1990) Live attenuated varicella vaccine: evidence that the virus is attenuated and the importance of skin lesions in transmission of varicella-zoster virus. National institute of allergy and infectious diseases Varicella vaccine collaborative study group. J Pediatr 116:184–189

    CAS  PubMed  Google Scholar 

  50. Whitman L (1939) Failure of Aedes aegypti to transmit yellow fever cultured virus (17D). Am J Trop Med Hyg 19:16–19

    Google Scholar 

  51. Manrubia SC, Escarmís C, Domingo E, Lázaro E (2005) High mutation rates, bottlenecks, and robustness of RNA viral quasispecies. Gene 347:273–282

    CAS  PubMed  Google Scholar 

  52. Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998) Rates of spontaneous mutation. Genetics 148:1667–1686

    CAS  PubMed  Google Scholar 

  53. Pugachev KV, Guirakhoo F, Ocran SW, Mitchell F, Parsons M, Penal C, Girakhoo S, Pougatcheva SO, Arroyo J, Trent DW, Monath TP (2004) High fidelity of yellow fever virus RNA polymerase. J Virol 78:1032–1038

    CAS  PubMed  Google Scholar 

  54. Shah D, Vidal S, Link MA, Rubin SA, Wright KE (2009) Identification of genetic mutations associated with attenuation and changes in tropism of Urabe mumps virus. J Med Virol 81:130–138

    PubMed  Google Scholar 

  55. Fox JP, Lennette EH, Manso C (1942) Souza Aguilar JR. Encephalitis in man following vaccination with 17D yellow fever virus. Am J Hyg 36:117–142

    Google Scholar 

  56. Eckels KH, Yu YX, Dubois DR, Marchette NJ, Trent DW, Johnson AJ (1988) Japanese encephalitis virus live-attenuated vaccine, Chinese strain SA14-14-2; adaptation to primary canine kidney cell cultures and preparation of a vaccine for human use. Vaccine 6:513–518

    CAS  PubMed  Google Scholar 

  57. Chumakov KM, Norwood LP, Parker ML, Dragunsky EM, Ran YX, Levenbook IS (1992) RNA sequence variants in live poliovirus vaccine and their relation to neurovirulence. J Virol 66:966–970

    CAS  PubMed  Google Scholar 

  58. Chumakov K, Norwood L, Parker M, Dragunsky E, Taffs R, Ran Y, Ridge J, Levenbook I (1993) Assessment of the viral RNA sequence heterogeneity for control of OPV neurovirulence. Dev Biol Stand 78:79–89

    CAS  PubMed  Google Scholar 

  59. Alexander LN, Seward JF, Santibanez TA, Pallansch MA, Kew OM, Prevots DR, Strebel PM, Cono J, Wharton M, Orenstein WA, Sutter RW (2004) Vaccine policy changes and epidemiology of poliomyelitis in the United States. JAMA 292:1696–1701

    CAS  PubMed  Google Scholar 

  60. Macadam AJ, Arnold C, Howlett J, John A, Marsden S, Taffs F, Reeve P, Hamada N, Wareham K, Almond J et al (1989) Reversion of the attenuated and temperature-sensitive phenotypes of the Sabin type 3 strain of poliovirus in vaccines. Virology 172:408–414

    CAS  PubMed  Google Scholar 

  61. Kapusinszky B, Molnár Z, Szomor KN, Berencsi G (2009) Molecular characterization of poliovirus isolates from children who contracted vaccine-associated paralytic poliomyelitis (VAPP) following administration of monovalent type 3 oral poliovirus vaccine in the 1960s in Hungary. FEMS Immunol Med Microbiol 58(2):211–217

    PubMed  Google Scholar 

  62. Friedrich F (1996) Genomic modifications in Sabin vaccine strains isolated from vaccination-associated cases, healthy contacts and healthy vaccinees. Acta Virol 40:157–170

    CAS  PubMed  Google Scholar 

  63. Jennings AD, Gibson CA, Miller BR, Matthews JH, Mitchell CJ, Roehrig JT, Wood DJ, Taffs F, Sil BK, Whitby SN, Whitby JE, Monath TP, Minor PD, Sanders PG, Barrett ADT (1994) Analysis of a yellow fever virus isolated from a fatal case of vaccine-associated human encephalitis. J Infect Dis 169:512–518

    CAS  PubMed  Google Scholar 

  64. Lin YH, Deatly AM, Chen W, Miller LZ, Lerch R, Sidhu MS, Udem SA, Randolph VB (2006) Genetic stability determinants of temperature sensitive, live attenuated respiratory syncytial virus vaccine candidates. Virus Res 115:9–15

    CAS  PubMed  Google Scholar 

  65. Minor PD, Dunn G (1988) The effect of sequences in the 5' non-coding region on the replication of polioviruses in the human gut. J Gen Virol 69:1091–1096

    CAS  PubMed  Google Scholar 

  66. Krugman RD, Meyer BC, Enterline JC, Parkman PD, Witte JJ, Meyer HM Jr (1974) Impotency of live-virus vaccines as a result of improper handling in clinical practice. J Pediatr 85:512–514

    CAS  PubMed  Google Scholar 

  67. Kuno-Sakai H, Kimura M (2003) Removal of gelatin from live vaccines and DTaP-an ultimate solution for vaccine-related gelatin allergy. Biologicals 31:245–249

    CAS  PubMed  Google Scholar 

  68. Weltzin R, Liu J, Pugachev KV, Myers GA, Coughlin B, Blum PS, Nichols R, Johnson C, Cruz J, Kennedy JS, Ennis FA, Monath TP (2003) Clonal vaccinia virus grown in cell culture as a new smallpox vaccine. Nat Med 9:1125–1130

    CAS  PubMed  Google Scholar 

  69. Monath TP, Caldwell JR, Mundt W, Fusco J, Johnson CS, Buller M, Liu J, Gardner B, Downing G, Blum PS, Kemp T, Nichols R, Weltzin R (2004) ACAM2000 clonal Vero cell culture vaccinia virus (New York City Board of Health strain) – a second-generation smallpox vaccine for biological defense. Int J Infect Dis 8(Suppl 2):31–44

    Google Scholar 

  70. Harris RJ, Dougherty RM, Biggs PM et al (1966) Contaminant viruses in two live virus vaccines produced in chick cells. J Hyg (Lond) 64:1–7

    CAS  Google Scholar 

  71. Waters TD, Anderson PS Jr, Beebe GW, Miller RW (1972) Yellow fever vaccination, avian leukosis virus, and cancer risk in man. Science 177:76–77

    CAS  PubMed  Google Scholar 

  72. Weiss RA (2001) Adventitious viral genomes in vaccines but not in vaccinees. Emerg Infect Dis 7:153–154

    CAS  PubMed  Google Scholar 

  73. Hussain AI, Johnson JA (2003) Da Silva Freire M, Heneine W. Identification and characterization of avian retroviruses in chicken embryo-derived yellow fever vaccines: investigation of transmission to vaccine recipients. J Virol 77:1105–1111

    CAS  PubMed  Google Scholar 

  74. Findlay GM, MacCallum FO (1938) Hepatitis and jaundice associated with immunization against certain virus diseases. Proc R Soc Med 31:799–806

    CAS  PubMed  Google Scholar 

  75. Fox JP, Manso C, Penna HA et al (1942) Observations on the occurence of icterus in Brazil following vaccination against yellow fever. Am J Hyg 36:68–116

    Google Scholar 

  76. Sawyer WA, Meyer KF, Eaton MD (1944) Jaundice in Army personnel in western region of United States and its relation to vaccination against yellow fever. Am J Hyg 40:35–107

    Google Scholar 

  77. Seeff LB, Beebe GW, Hoofnagle JH (1987) A serologic follow-up of the 1942 epidemic of post-vaccination hepatitis in the US Army. N Engl J Med 316:965–970

    CAS  PubMed  Google Scholar 

  78. Norman JE, Beebe GW, Hoofnagle JH, Seeff LB (1993) Mortality follow-up of the 1942 epidemic of hepatitis B in the U.S. Army. Hepatology 18:790–797

    CAS  PubMed  Google Scholar 

  79. Studer E, Bertoni G, Candrian U (2002) Detection and characterization of pestivirus contaminations in human live viral vaccines. Biologicals 30:289–296

    CAS  PubMed  Google Scholar 

  80. Giangaspero M, Vacirca G, Harasawa R, Büttner M, Panuccio A, De Giuli MC, Zanetti A, Belloli A, Verhulst A (2001) Genotypes of pestivirus RNA detected in live virus vaccines for human use. J Vet Med Sci 63:723–733

    CAS  PubMed  Google Scholar 

  81. Audet SA, Crim RL, Beeler J (2000) Evaluation of vaccines, interferons and cell substrates for pestivirus contamination. Biologicals 28:41–46

    CAS  PubMed  Google Scholar 

  82. Giangaspero M, Vacirca G, Morgan D, Baboo KS, Luo NP, DuPont HL, Zumla A (1993) Anti-bovine viral diarrhoea virus antibodies in adult Zambian patients infected with the human immunodeficiency virus. Int J STD AIDS 4:300–302

    CAS  PubMed  Google Scholar 

  83. Yolken R, Dubovi E, Leister F, Reid R, Almeido-Hill J, Santosham M (1989) Infantile gastroenteritis associated with excretion of pestivirus antigens. Lancet 1:517–520

    CAS  PubMed  Google Scholar 

  84. Giangaspero M, Harasawa R, Verhulst A (1997) Genotypic analysis of the 5'-untranslated region of a pestivirus strain isolated from human leucocytes. Microbiol Immunol 41:829–834

    CAS  PubMed  Google Scholar 

  85. Nims RW (2006) Detection of adventitious viruses in biologicals–a rare occurrence. Dev Biol (Basel) 123:153–164, discussion 183–197

    CAS  Google Scholar 

  86. Sexton DJ, Rollin PE, Breitschwerdt EB, Corey GR, Myers SA, Dumais MR, Bowen MD, Goldsmith CS, Zaki SR, Nichol ST, Peters CJ, Ksiatek TG (1997) Life-threatening Cache Valley virus infection. N Engl J Med 336:547–549

    CAS  PubMed  Google Scholar 

  87. Strickler HD, Rosenberg PS, Devesa SS, Hertel J, Fraumeni JF Jr, Goedert JJ (1998) Contamination of poliovirus vaccines with simian virus 40 (1955-1963) and subsequent cancer rates. JAMA 279:292–295

    CAS  PubMed  Google Scholar 

  88. Klein G, Powers A, Croce C (2002) Association of SV40 with human tumors. Oncogene 21:1141–1149

    CAS  PubMed  Google Scholar 

  89. Lee W, Langhoff E (2006) Polyomavirus in human cancer development. Adv Exp Med Biol 577:310–318

    CAS  PubMed  Google Scholar 

  90. Lindsey NP, Schroeder BA, Miller ER, Braun MM, Hinckley AF, Marano N, Slade BA, Barnett ED, Brunette GW, Horan K, Staples JE, Kozarsky PE, Hayes EB (2008) Adverse event reports following yellow fever vaccination. Vaccine 26:6077–6082

    CAS  PubMed  Google Scholar 

  91. Hayes EB (2007) Acute viscerotropic disease following vaccination against yellow fever. Trans R Soc Trop Med Hyg 101:967–971

    PubMed  Google Scholar 

  92. Galler R, Pugachev KV, Santos CLS, Ochran S, Jabor AV, Rodrigues SG, Marchevsky RS, Freire MS, Almeida LFC, Cruz ACR, Yamamura AMY, Rocco IM, Travassos da Rosa ES, Souza LTM, Vasconcelos PFC, Guirakhoo F, Monath TP (2001) Phenotypic and molecular analyses of yellow fever 17DD vaccine virus associated with serious adverse events in Brazil. Virology 290:309–319

    CAS  PubMed  Google Scholar 

  93. Whittembury A, Ramirez G, Hernández H, Ropero AM, Waterman S, Ticona M, Brinton M, Uchuya J, Gershman M, Toledo W, Staples E, Campos C, Martínez M, Chang GJ, Cabezas C, Lanciotti R, Zaki S, Montgomery JM, Monath T, Hayes E (2009) Viscerotropic disease following yellow fever vaccination in Peru. Vaccine 27:5974–5981

    PubMed  Google Scholar 

  94. Barwick R (2004) Eidex for the yellow fever vaccine safety working group History of thymoma and yellow fever vaccination. Lancet 364:936

    PubMed  Google Scholar 

  95. Pulendran B, Miller J, Querec TD, Akondy R, Moseley N, Laur O, Glidewell J, Monson N, Zhu T, Zhu H, Staprans S, Lee D, Brinton MA, Perelygin AA, Vellozzi C, Brachman P Jr, Lalor S, Teuwen D, Eidex RB, Cetron M, Priddy F, del Rio C, Altman J, Ahmed R (2008) Case of yellow fever vaccine–associated viscerotropic disease with prolonged viremia, robust adaptive immune responses, and polymorphisms in CCR5 and RANTES genes. J Infect Dis 198:500–507

    PubMed  Google Scholar 

  96. Belsher JL, Gay P, Brinton M, DellaValla J, Ridenour R, Lanciotti R, Perelygin A, Zaki S, Paddock C, Querec T, Zhu T, Pulendran B, Eidex RB, Hayes E (2007) Fatal multiorgan failure due to yellow fever vaccine-associated viscerotropic disease. Vaccine 25:8480–8485

    PubMed  Google Scholar 

  97. Meier KC, Gardner CL, Khoretonenko MV, Klimstra WB, Ryman KD (2009) A mouse model for studying viscerotropic disease caused by yellow fever virus infection. PLoS Pathog 5(10):e1000614

    PubMed  Google Scholar 

  98. Kengsakul K, Sathirapongsasuti K, Punyagupta S (2002) Fatal myeloencephalitis following yellow fever vaccination in a case with HIV infection. J Med Assoc Thai 85:131–134

    PubMed  Google Scholar 

  99. Sharrar RG, LaRussa P, Galea SA, Steinberg SP, Sweet AR, Keatley RM, Wells ME, Stephenson WP, Gershon AA (2000) The postmarketing safety profile of varicella vaccine. Vaccine 19:916–923

    CAS  PubMed  Google Scholar 

  100. McGee CE, Lewis MG, Claire MS, Wagner W, Lang J, Guy B, Tsetsarkin K, Higgs S, Decelle T (2008) Recombinant chimeric virus with wild-type dengue 4 virus premembrane and envelope and virulent yellow fever virus Asibi backbone sequences is dramatically attenuated in nonhuman primates. J Infect Dis 197:693–697

    CAS  PubMed  Google Scholar 

  101. Cao W, Manicassamy S, Tang H, Kasturi SP, Pirani A, Murthy N, Pulendran B (2008) Toll-like receptor-mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway. Nat Immunol 9:1157–1164

    CAS  PubMed  Google Scholar 

  102. Timm A, Enzinger C, Felder E, Chaplin P (2006) Genetic stability of recombinant MVA-BN. Vaccine 24:4618–4621

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel

About this chapter

Cite this chapter

, T.. (2011). Classical Live Viral Vaccines. In: Dormitzer, P., Mandl, C., Rappuoli, R. (eds) Replicating Vaccines. Birkhäuser Advances in Infectious Diseases. Springer, Basel. https://doi.org/10.1007/978-3-0346-0277-8_3

Download citation

Publish with us

Policies and ethics