Skip to main content

Live Attenuated Vaccines for Respiratory Syncytial Virus

  • Chapter
  • First Online:
Replicating Vaccines

Part of the book series: Birkhäuser Advances in Infectious Diseases ((BAID))

Abstract

In the five decades since the identification of respiratory syncytial virus (RSV) as an important pediatric pathogen, no effective vaccine has been developed. Previous attempts to develop inactivated RSV vaccines resulted in vaccine-enhanced disease, resulting in a greater focus on the generation of live attenuated RSV vaccines. However, identifying a live attenuated vaccine candidate that is appropriately attenuated and sufficiently immunogenic has proven to be difficult. Recently, reverse genetics systems have been developed for RSV, allowing researchers to introduce specific mutations into the genomes of recombinant vaccine candidates. These systems provide a means of determining the effects of known attenuating mutations and identifying novel methods of attenuating the virus without decreasing immunogenicity. In addition, different mutations can be combined in a single genome to fine-tune the level of attenuation and immunogenicity to achieve the proper balance in a viable vaccine candidate. Current research into RSV attenuation includes investigation of point mutations responsible for temperature sensitivity, nontemperature-sensitive attenuating mutations, and deletion of nonessential viral genes that play roles in viral RNA synthesis and/or inhibition of innate immune responses. Development of an effective RSV vaccine will likely rely on using reverse genetics systems to optimize the attenuation and immunogenicity of a live vaccine candidate, while preserving viral replication in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glezen WP, Taber LH, Frank AL, Kasel JA (1986) Risk of primary infection and reinfection with respiratory syncytial virus. Am J Dis Child 140:543–546

    CAS  PubMed  Google Scholar 

  2. Anderson LJ, Parker RA, Strikas RL (1990) Association between respiratory syncytial virus outbreaks and lower respiratory tract deaths of infants and young children. J Infect Dis 161:640–646

    CAS  PubMed  Google Scholar 

  3. Paramore LC, Ciuryla V, Ciesla G, Liu L (2004) Economic impact of respiratory syncytial virus-related illness in the US: an analysis of national databases. Pharmacoeconomics 22:275–284

    Article  PubMed  Google Scholar 

  4. Shay DK, Holman RC, Newman RD, Liu LL, Stout JW, Anderson LJ (1999) Bronchiolitis-associated hospitalizations among US children, 1980–1996. JAMA 282:1440–1446

    Article  CAS  PubMed  Google Scholar 

  5. Shay DK, Holman RC, Roosevelt GE, Clarke MJ, Anderson LJ (2001) Bronchiolitis-associated mortality and estimates of respiratory syncytial virus-associated deaths among US children, 1979–1997. J Infect Dis 183:16–22

    Article  CAS  PubMed  Google Scholar 

  6. Altman CA, Englund JA, Demmler G, Drescher KL, Alexander MA, Watrin C, Feltes TF (2000) Respiratory syncytial virus in patients with congenital heart disease: a contemporary look at epidemiology and success of preoperative screening. Pediatr Cardiol 21:433–438

    Article  CAS  PubMed  Google Scholar 

  7. Huang M, Bigos D, Levine M (1998) Ventricular arrhythymia associated with respiratory syncytial viral infection. Pediatr Cardiol 19:498–500

    Article  CAS  PubMed  Google Scholar 

  8. Yount LE, Mahle WT (2004) Economic analysis of palivizumab in infants with congenital heart disease. Pediatrics 114:1606–1611

    Article  PubMed  Google Scholar 

  9. Kaneko M, Watanabe J, Ueno E, Hida M, Sone T (2001) Risk factors for severe respiratory syncytial virus-associated lower respiratory tract infection in children. Pediatr Int 43:489–492

    Article  CAS  PubMed  Google Scholar 

  10. Collins PL, Chanock RM, Murphy BR (2001) Respiratory syncytial virus. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott, Williams and Wilkins, Philadelphia, pp 1443–1485

    Google Scholar 

  11. van Drunen L, van den Hurk S, Mapletoft JW, Arsic N, Kovacs-Nolan J (2007) Immunopathology of RSV infection: prospects for developing vaccines without this complication. Rev Med Virol 17:5–34

    Article  CAS  Google Scholar 

  12. Welliver RC Sr (2008) The immune response to respiratory syncytial virus infection: friend or foe? Clin Rev Allergy Immunol 34:163–173

    Article  CAS  PubMed  Google Scholar 

  13. Hoffman SJ, Laham FR, Polack FP (2004) Mechanisms of illness during respiratory syncytial virus infection: the lungs, the virus and the immune response. Microbes Infect 6:767–772

    Article  PubMed  Google Scholar 

  14. Welliver TP, Garofalo RP, Hosakote Y, Hintz KH, Avendano L, Sanchez K, Velozo L, Jafri H, Chavez-Bueno S, Ogra PL et al (2007) Severe human lower respiratory tract illness caused by respiratory syncytial virus and influenza virus is characterized by the absence of pulmonary cytotoxic lymphocyte responses. J Infect Dis 195:1126–1136

    Article  CAS  PubMed  Google Scholar 

  15. Welliver TP, Reed JL, Welliver RC Sr (2008) Respiratory syncytial virus and influenza virus infections: observations from tissues of fatal infant cases. Pediatr Infect Dis J 27:S92–S96

    Article  PubMed  Google Scholar 

  16. DeVincenzo JP, El Saleeby CM, Bush AJ (2005) Respiratory syncytial virus load predicts disease severity in previously healthy infants. J Infect Dis 191:1861–1868

    Article  PubMed  Google Scholar 

  17. Somers CC, Ahmad N, Mejias A, Buckingham SC, Carubelli C, Katz K, Leos N, Gomez AM, Devincenzo JP, Ramilo O et al (2009) Effect of dexamethasone on respiratory syncytial virus-induced lung inflammation in children: results of a randomized, placebo controlled clinical trial. Pediatr Allergy Immunol 20:477–485

    Article  PubMed  Google Scholar 

  18. Collins PL, Crowe JEJ (2007) Respiratory syncytial virus and metapneumoviruses. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE (eds) Field's virology. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  19. Marchant A, Goetghebuer T, Ota MO, Wolfe I, Ceesay SJ, De Groote D, Corrah T, Bennett S, Wheeler J, Huygen K et al (1999) Newborns develop a Th1-type immune response to Mycobacterium bovis bacillus Calmette-Guerin vaccination. J Immunol 163:2249–2255

    CAS  PubMed  Google Scholar 

  20. Vekemans J, Amedei A, Ota MO, D'Elios MM, Goetghebuer T, Ismaili J, Newport MJ, Del Prete G, Goldman M, McAdam KP et al (2001) Neonatal bacillus Calmette-Guerin vaccination induces adult-like IFN-gamma production by CD4+ T lymphocytes. Eur J Immunol 31:1531–1535

    Article  CAS  PubMed  Google Scholar 

  21. Stensballe LG, Nante E, Jensen IP, Kofoed PE, Poulsen A, Jensen H, Newport M, Marchant A, Aaby P (2005) Acute lower respiratory tract infections and respiratory syncytial virus in infants in Guinea-Bissau: a beneficial effect of BCG vaccination for girls community based case-control study. Vaccine 23:1251–1257

    Article  CAS  PubMed  Google Scholar 

  22. Panda A, Arjona A, Sapey E, Bai F, Fikrig E, Montgomery RR, Lord JM, Shaw AC (2009) Human innate immunosenescence: causes and consequences for immunity in old age. Trends Immunol 30:325–333

    Article  CAS  PubMed  Google Scholar 

  23. Fujihashi K, Kiyono H (2009) Mucosal immunosenescence: new developments and vaccines to control infectious diseases. Trends Immunol 30:334–343

    Article  CAS  PubMed  Google Scholar 

  24. Chen WH, Kozlovsky BF, Effros RB, Grubeck-Loebenstein B, Edelman R, Sztein MB (2009) Vaccination in the elderly: an immunological perspective. Trends Immunol 30:351–359

    Article  PubMed  CAS  Google Scholar 

  25. Fulton RB, Varga SM (2009) Effects of aging on the adaptive immune response to respiratory virus infections. Aging health 5:775

    Article  PubMed  Google Scholar 

  26. Sambhara S, McElhaney JE (2009) Immunosenescence and influenza vaccine efficacy. Curr Top Microbiol Immunol 333:413–429

    Article  PubMed  Google Scholar 

  27. Siegrist CA, Aspinall R (2009) B-cell responses to vaccination at the extremes of age. Nat Rev Immunol 9:185–194

    Article  CAS  PubMed  Google Scholar 

  28. Siegrist CA (2007) The challenges of vaccine responses in early life: selected examples. J Comp Pathol 137(Suppl 1):S4–S9

    Article  CAS  PubMed  Google Scholar 

  29. Morein B, Blomqvist G, Hu K (2007) Immune responsiveness in the neonatal period. J Comp Pathol 137(Suppl 1):S27–S31

    Article  CAS  PubMed  Google Scholar 

  30. Williams JV, Weitkamp JH, Blum DL, LaFleur BJ, Crowe JE Jr (2009) The human neonatal B cell response to respiratory syncytial virus uses a biased antibody variable gene repertoire that lacks somatic mutations. Mol Immunol 47:407–414

    Article  CAS  PubMed  Google Scholar 

  31. Jin H, Zhou H, Cheng X, Tang R, Munoz M, Nguyen N (2000) Recombinant respiratory syncytial viruses with deletions in the NS1, NS2, SH, and M2-2 genes are attenuated in vitro and in vivo. Virology 273:210–218

    Article  CAS  PubMed  Google Scholar 

  32. Teng MN, Collins PL (1999) Altered growth characteristics of recombinant respiratory syncytial viruses which do not produce NS2 protein. J Virol 73:466–473

    CAS  PubMed  Google Scholar 

  33. Hall CB (2004) Managing bronchiolitis and respiratory syncytial virus: finding the yellow brick road. Arch Pediatr Adolesc Med 158:111–112

    Article  PubMed  Google Scholar 

  34. Ventre K, Randolph AG (2007) Ribavirin for respiratory syncytial virus infection of the lower respiratory tract in infants and young children. Cochrane Database Syst Rev 1:CD000181

    PubMed  Google Scholar 

  35. Chavez-Bueno S, Mejias A, Welliver RC (2006) Respiratory syncytial virus bronchiolitis: current and future strategies for treatment and prophylaxis. Treat Respir Med 5:483–494

    Article  CAS  PubMed  Google Scholar 

  36. Kuzik BA, Al-Qadhi SA, Kent S, Flavin MP, Hopman W, Hotte S, Gander S (2007) Nebulized hypertonic saline in the treatment of viral bronchiolitis in infants. J Pediatr 151:266–270, e261

    Article  CAS  PubMed  Google Scholar 

  37. Zhang L, Mendoza-Sassi RA, Wainwright C, Klassen TP (2008) Nebulized hypertonic saline solution for acute bronchiolitis in infants. Cochrane Database Syst Rev 4:CD006458

    PubMed  Google Scholar 

  38. Elhassan NO, Sorbero ME, Hall CB, Stevens TP, Dick AW (2006) Cost-effectiveness analysis of palivizumab in premature infants without chronic lung disease. Arch Pediatr Adolesc Med 160:1070–1076

    Article  PubMed  Google Scholar 

  39. Chavez-Bueno S, Mejias A, Merryman RA, Ahmad N, Jafri HS, Ramilo O (2007) Intravenous palivizumab and ribavirin combination for respiratory syncytial virus disease in high-risk pediatric patients. Pediatr Infect Dis J 26:1089–1093

    Article  PubMed  Google Scholar 

  40. Cardenas S, Auais A, Piedimonte G (2005) Palivizumab in the prophylaxis of respiratory syncytial virus infection. Expert Rev Anti Infect Ther 3:719–726

    Article  CAS  PubMed  Google Scholar 

  41. Carbonell-Estrany X, Simoes EA, Dagan R, Hall CB, Harris B, Hultquist M, Connor EM, Losonsky GA (2010) Motavizumab for prophylaxis of respiratory syncytial virus in high-risk children: a noninferiority trial. Pediatrics 125:e35–e51

    Article  PubMed  Google Scholar 

  42. Wu H, Pfarr DS, Johnson S, Brewah YA, Woods RM, Patel NK, White WI, Young JF, Kiener PA (2007) Development of motavizumab, an ultra-potent antibody for the prevention of respiratory syncytial virus infection in the upper and lower respiratory tract. J Mol Biol 368:652–665

    Article  CAS  PubMed  Google Scholar 

  43. Kapikian AZ, Mitchell RH, Chanock RM, Shvedoff RA, Stewart CE (1969) An epidemiologic study of altered clinical reactivity to respiratory syncytial (RS) virus infection in children previously vaccinated with an inactivated RS virus vaccine. Am J Epidemiol 89:405–421

    CAS  PubMed  Google Scholar 

  44. Kim HW, Canchola JG, Brandt CD, Pyles G, Chanock RM, Jensen K, Parrott RH (1969) Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am J Epidemiol 89:422–434

    CAS  PubMed  Google Scholar 

  45. Kim HW, Arrobio JO, Brandt CD, Wright P, Hodes D, Chanock RM, Parrott RH (1973) Safety and antigenicity of temperature sensitive (TS) mutant respiratory syncytial virus (RSV) in infants and children. Pediatrics 52:56–63

    CAS  PubMed  Google Scholar 

  46. Castilow EM, Olson MR, Varga SM (2007) Understanding respiratory syncytial virus (RSV) vaccine-enhanced disease. Immunol Res 39:225–239

    Article  CAS  PubMed  Google Scholar 

  47. Delgado MF, Polack FP (2004) Involvement of antibody, complement and cellular immunity in the pathogenesis of enhanced respiratory syncytial virus disease. Expert Rev Vaccines 3:693–700

    Article  CAS  PubMed  Google Scholar 

  48. Delgado MF, Coviello S, Monsalvo AC, Melendi GA, Hernandez JZ, Batalle JP, Diaz L, Trento A, Chang HY, Mitzner W et al (2009) Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease. Nat Med 15:34–41

    Article  CAS  PubMed  Google Scholar 

  49. Wright PF, Karron RA, Belshe RB, Thompson J, Crowe JE Jr, Boyce TG, Halburnt LL, Reed GW, Whitehead SS, Anderson EL et al (2000) Evaluation of a live, cold-passaged, temperature-sensitive, respiratory syncytial virus vaccine candidate in infancy. J Infect Dis 182:1331–1342

    Article  CAS  PubMed  Google Scholar 

  50. Wright PF, Shinozaki T, Fleet W, Sell SH, Thompson J, Karzon DT (1976) Evaluation of a live, attenuated respiratory syncytial virus vaccine in infants. J Pediatr 88:931–936

    Article  CAS  PubMed  Google Scholar 

  51. Karron RA, Buonagurio DA, Georgiu AF, Whitehead SS, Adamus JE, Clements-Mann ML, Harris DO, Randolph VB, Udem SA, Murphy BR et al (1997) Respiratory syncytial virus (RSV) SH and G proteins are not essential for viral replication in vitro: clinical evaluation and molecular characterization of a cold-passaged, attenuated RSV subgroup B mutant. Proc Natl Acad Sci USA 94:13961–13966

    Article  CAS  PubMed  Google Scholar 

  52. Karron RA, Wright PF, Belshe RB, Thumar B, Casey R, Newman F, Polack FP, Randolph VB, Deatly A, Hackell J et al (2005) Identification of a recombinant live attenuated respiratory syncytial virus vaccine candidate that is highly attenuated in infants. J Infect Dis 191:1093–1104

    Article  PubMed  Google Scholar 

  53. Karron RA, Wright PF, Crowe JE Jr, Clements-Mann ML, Thompson J, Makhene M, Casey R, Murphy BR (1997) Evaluation of two live, cold-passaged, temperature-sensitive respiratory syncytial virus vaccines in chimpanzees and in human adults, infants, and children. J Infect Dis 176:1428–1436

    Article  CAS  PubMed  Google Scholar 

  54. Johnson PR Jr, Feldman S, Thompson JM, Mahoney JD, Wright PF (1985) Comparison of long-term systemic and secretory antibody responses in children given live, attenuated, or inactivated influenza A vaccine. J Med Virol 17:325–335

    Article  PubMed  Google Scholar 

  55. Johnson PR, Feldman S, Thompson JM, Mahoney JD, Wright PF (1986) Immunity to influenza A virus infection in young children: a comparison of natural infection, live cold-adapted vaccine, and inactivated vaccine. J Infect Dis 154:121–127

    CAS  PubMed  Google Scholar 

  56. Jt M, Van Kirk JE, Wright PF, Chanock RM (1971) Experimental respiratory syncytial virus infection of adults. Possible mechanisms of resistance to infection and illness. J Immunol 107:123–130

    Google Scholar 

  57. Polack FP, Karron RA (2004) The future of respiratory syncytial virus vaccine development. Pediatr Infect Dis J 23:S65–S73

    Article  PubMed  Google Scholar 

  58. Collins PL, Whitehead SS, Bukreyev A, Fearns R, Teng MN, Juhasz K, Chanock RM, Murphy BR (1999) Rational design of live-attenuated recombinant vaccine virus for human respiratory syncytial virus by reverse genetics. Adv Virus Res 54:423–451

    Article  CAS  PubMed  Google Scholar 

  59. Pringle CR, Filipiuk AH, Robinson BS, Watt PJ, Higgins P, Tyrrell DA (1993) Immunogenicity and pathogenicity of a triple temperature-sensitive modified respiratory syncytial virus in adult volunteers. Vaccine 11:473–478

    Article  CAS  PubMed  Google Scholar 

  60. Wright PF, Mills J, Chanock RM (1971) Evaluation of a temperature-sensitive mutant of respiratory syncytial virus in adults. J Infect Dis 124:505–511

    CAS  PubMed  Google Scholar 

  61. Wright PF, Belshe RB, Kim HW, Van Voris LP, Chanock RM (1982) Administration of a highly attenuated, live respiratory syncytial virus vaccine to adults and children. Infect Immun 37:397–400

    CAS  PubMed  Google Scholar 

  62. Wright PF, Karron RA, Belshe RB, Shi JR, Randolph VB, Collins PL, O'Shea AF, Gruber WC, Murphy BR (2007) The absence of enhanced disease with wild type respiratory syncytial virus infection occurring after receipt of live, attenuated, respiratory syncytial virus vaccines. Vaccine 25:7372–7378

    Article  CAS  PubMed  Google Scholar 

  63. Whitehead SS, Firestone CY, Collins PL, Murphy BR (1998) A single nucleotide substitution in the transcription start signal of the M2 gene of respiratory syncytial virus vaccine candidate cpts248/404 is the major determinant of the temperature-sensitive and attenuation phenotypes. Virology 247:232–239

    Article  CAS  PubMed  Google Scholar 

  64. Whitehead SS, Juhasz K, Firestone CY, Collins PL, Murphy BR (1998) Recombinant respiratory syncytial virus (RSV) bearing a set of mutations from cold-passaged RSV is attenuated in chimpanzees. J Virol 72:4467–4471

    CAS  PubMed  Google Scholar 

  65. Juhasz K, Whitehead SS, Boulanger CA, Firestone CY, Collins PL, Murphy BR (1999) The two amino acid substitutions in the L protein of cpts530/1009, a live-attenuated respiratory syncytial virus candidate vaccine, are independent temperature-sensitive and attenuation mutations. Vaccine 17:1416–1424

    Article  CAS  PubMed  Google Scholar 

  66. Juhasz K, Whitehead SS, Bui PT, Biggs JM, Crowe JE, Boulanger CA, Collins PL, Murphy BR (1997) The temperature-sensitive (ts) phenotype of a cold-passaged (cp) live attenuated respiratory syncytial virus vaccine candidate, designated cpts530, results from a single amino acid substitution in the L protein. J Virol 71:5814–5819

    CAS  PubMed  Google Scholar 

  67. Jin H, Clarke D, Zhou HZ, Cheng X, Coelingh K, Bryant M, Li S (1998) Recombinant human respiratory syncytial virus (RSV) from cDNA and construction of subgroup A and B chimeric RSV. Virology 251:206–214

    Article  CAS  PubMed  Google Scholar 

  68. Collins PL, Hill MG, Camargo E, Grosfeld H, Chanock RM, Murphy BR (1995) Production of infectious human respiratory syncytial virus from cloned cDNA confirms an essential role for the transcription elongation factor from the 5' proximal open reading frame of the M2 mRNA in gene expression and provides a capability for vaccine development. Proc Natl Acad Sci USA 92:11563–11567

    Article  CAS  PubMed  Google Scholar 

  69. Surman SR, Collins PL, Murphy BR, Skiadopoulos MH (2007) An improved method for the recovery of recombinant paramyxovirus vaccine candidates suitable for use in human clinical trials. J Virol Methods 141:30–33

    Article  CAS  PubMed  Google Scholar 

  70. Whitehead SS, Firestone CY, Karron RA, Crowe JE Jr, Elkins WR, Collins PL, Murphy BR (1999) Addition of a missense mutation present in the L gene of respiratory syncytial virus (RSV) cpts530/1030 to RSV vaccine candidate cpts248/404 increases its attenuation and temperature sensitivity. J Virol 73:871–877

    CAS  PubMed  Google Scholar 

  71. Lu B, Brazas R, Ma CH, Kristoff T, Cheng X, Jin H (2002) Identification of temperature-sensitive mutations in the phosphoprotein of respiratory syncytial virus that are likely involved in its interaction with the nucleoprotein. J Virol 76:2871–2880

    Article  CAS  PubMed  Google Scholar 

  72. Lu B, Ma CH, Brazas R, Jin H (2002) The major phosphorylation sites of the respiratory syncytial virus phosphoprotein are dispensable for virus replication in vitro. J Virol 76:10776–10784

    Article  CAS  PubMed  Google Scholar 

  73. Tang RS, Nguyen N, Zhou H, Jin H (2002) Clustered charge-to-alanine mutagenesis of human respiratory syncytial virus L polymerase generates temperature-sensitive viruses. Virology 302:207–216

    Article  CAS  PubMed  Google Scholar 

  74. Teng MN, Whitehead SS, Bermingham A, St Claire M, Elkins WR, Murphy BR, Collins PL (2000) Recombinant respiratory syncytial virus that does not express the NS1 or M2-2 protein is highly attenuated and immunogenic in chimpanzees. J Virol 74:9317–9321

    Article  CAS  PubMed  Google Scholar 

  75. Whitehead SS, Bukreyev A, Teng MN, Firestone CY, St Claire M, Elkins WR, Collins PL, Murphy BR (1999) Recombinant respiratory syncytial virus bearing a deletion of either the NS2 or SH gene is attenuated in chimpanzees. J Virol 73:3438–3442

    CAS  PubMed  Google Scholar 

  76. Jin H, Cheng X, Traina-Dorge VL, Park HJ, Zhou H, Soike K, Kemble G (2003) Evaluation of recombinant respiratory syncytial virus gene deletion mutants in African green monkeys for their potential as live attenuated vaccine candidates. Vaccine 21:3647–3652

    Article  CAS  PubMed  Google Scholar 

  77. Bukreyev A, Whitehead SS, Murphy BR, Collins PL (1997) Recombinant respiratory syncytial virus from which the entire SH gene has been deleted grows efficiently in cell culture and exhibits site-specific attenuation in the respiratory tract of the mouse. J Virol 71:8973–8982

    CAS  PubMed  Google Scholar 

  78. Jin H, Cheng X, Zhou HZ, Li S, Seddiqui A (2000) Respiratory syncytial virus that lacks open reading frame 2 of the M2 gene (M2-2) has altered growth characteristics and is attenuated in rodents. J Virol 74:74–82

    Article  CAS  PubMed  Google Scholar 

  79. Wright PF, Karron RA, Madhi SA, Treanor JJ, King JC, O'Shea A, Ikizler MR, Zhu Y, Collins PL, Cutland C et al (2006) The interferon antagonist NS2 protein of respiratory syncytial virus is an important virulence determinant for humans. J Infect Dis 193:573–581

    Article  CAS  PubMed  Google Scholar 

  80. Collins PL, Purcell RH, London WT, Lawrence LA, Chanock RM, Murphy BR (1990) Evaluation in chimpanzees of vaccinia virus recombinants that express the surface glycoproteins of human respiratory syncytial virus. Vaccine 8:164–168

    Article  CAS  PubMed  Google Scholar 

  81. Olmsted RA, Buller RM, Collins PL, London WT, Beeler JA, Prince GA, Chanock RM, Murphy BR (1988) Evaluation in non-human primates of the safety, immunogenicity and efficacy of recombinant vaccinia viruses expressing the F or G glycoprotein of respiratory syncytial virus. Vaccine 6:519–524

    Article  CAS  PubMed  Google Scholar 

  82. Olmsted RA, Elango N, Prince GA, Murphy BR, Johnson PR, Moss B, Chanock RM, Collins PL (1986) Expression of the F glycoprotein of respiratory syncytial virus by a recombinant vaccinia virus: comparison of the individual contributions of the F and G glycoproteins to host immunity. Proc Natl Acad Sci USA 83:7462–7466

    Article  CAS  PubMed  Google Scholar 

  83. Elango N, Prince GA, Murphy BR, Venkatesan S, Chanock RM, Moss B (1986) Resistance to human respiratory syncytial virus (RSV) infection induced by immunization of cotton rats with a recombinant vaccinia virus expressing the RSV G glycoprotein. Proc Natl Acad Sci USA 83:1906–1910

    Article  CAS  PubMed  Google Scholar 

  84. Wyatt LS, Whitehead SS, Venanzi KA, Murphy BR, Moss B (1999) Priming and boosting immunity to respiratory syncytial virus by recombinant replication-defective vaccinia virus MVA. Vaccine 18:392–397

    Article  CAS  PubMed  Google Scholar 

  85. de Waal L, Wyatt LS, Yuksel S, van Amerongen G, Moss B, Niesters HG, Osterhaus AD, de Swart RL (2004) Vaccination of infant macaques with a recombinant modified vaccinia virus Ankara expressing the respiratory syncytial virus F and G genes does not predispose for immunopathology. Vaccine 22:923–926

    Article  PubMed  CAS  Google Scholar 

  86. Shao HY, Yu SL, Sia C, Chen Y, Chitra E, Chen IH, Venkatesan N, Leng CH, Chong P, Chow YH (2009) Immunogenic properties of RSV-B1 fusion (F) protein gene-encoding recombinant adenoviruses. Vaccine 27:5460–5471

    Article  CAS  PubMed  Google Scholar 

  87. Yu JR, Kim S, Lee JB, Chang J (2008) Single intranasal immunization with recombinant adenovirus-based vaccine induces protective immunity against respiratory syncytial virus infection. J Virol 82:2350–2357

    Article  CAS  PubMed  Google Scholar 

  88. Hsu KH, Lubeck MD, Bhat BM, Bhat RA, Kostek B, Selling BH, Mizutani S, Davis AR, Hung PP (1994) Efficacy of adenovirus-vectored respiratory syncytial virus vaccines in a new ferret model. Vaccine 12:607–612

    Article  CAS  PubMed  Google Scholar 

  89. Hsu KH, Lubeck MD, Davis AR, Bhat RA, Selling BH, Bhat BM, Mizutani S, Murphy BR, Collins PL, Chanock RM et al (1992) Immunogenicity of recombinant adenovirus-respiratory syncytial virus vaccines with adenovirus types 4, 5, and 7 vectors in dogs and a chimpanzee. J Infect Dis 166:769–775

    CAS  PubMed  Google Scholar 

  90. Fu Y, He J, Zheng X, Wu Q, Zhang M, Wang X, Wang Y, Xie C, Tang Q, Wei W et al (2009) Intranasal immunization with a replication-deficient adenoviral vector expressing the fusion glycoprotein of respiratory syncytial virus elicits protective immunity in BALB/c mice. Biochem Biophys Res Commun 381:528–532

    Article  CAS  PubMed  Google Scholar 

  91. Mok H, Lee S, Utley TJ, Shepherd BE, Polosukhin VV, Collier ML, Davis NL, Johnston RE, Crowe JE Jr (2007) Venezuelan equine encephalitis virus replicon particles encoding respiratory syncytial virus surface glycoproteins induce protective mucosal responses in mice and cotton rats. J Virol 81:13710–13722

    Article  CAS  PubMed  Google Scholar 

  92. Elliott MB, Chen T, Terio NB, Chong SY, Abdullah R, Luckay A, Egan MA, Boutilier LA, Melville K, Lerch RA et al (2007) Alphavirus replicon particles encoding the fusion or attachment glycoproteins of respiratory syncytial virus elicit protective immune responses in BALB/c mice and functional serum antibodies in rhesus macaques. Vaccine 25:7132–7144

    Article  CAS  PubMed  Google Scholar 

  93. Chen M, Hu KF, Rozell B, Orvell C, Morein B, Liljestrom P (2002) Vaccination with recombinant alphavirus or immune-stimulating complex antigen against respiratory syncytial virus. J Immunol 169:3208–3216

    CAS  PubMed  Google Scholar 

  94. Fleeton MN, Chen M, Berglund P, Rhodes G, Parker SE, Murphy M, Atkins GJ, Liljestrom P (2001) Self-replicative RNA vaccines elicit protection against influenza A virus, respiratory syncytial virus, and a tickborne encephalitis virus. J Infect Dis 183:1395–1398

    Article  CAS  PubMed  Google Scholar 

  95. Murata Y (2009) Respiratory syncytial virus vaccine development. Clin Lab Med 29:725–739

    Article  PubMed  Google Scholar 

  96. Collins PL, Murphy BR (2002) Respiratory syncytial virus: reverse genetics and vaccine strategies. Virology 296:204–211

    Article  CAS  PubMed  Google Scholar 

  97. Collins PL, Murphy BR (2005) New generation live vaccines against human respiratory syncytial virus designed by reverse genetics. Proc Am Thorac Soc 2:166–173

    Article  CAS  PubMed  Google Scholar 

  98. Martinez-Sobrido L, Gitiban N, Fernandez-Sesma A, Cros J, Mertz SE, Jewell NA, Hammond S, Flano E, Durbin RK, Garcia-Sastre A et al (2006) Protection against respiratory syncytial virus by a recombinant Newcastle disease virus vector. J Virol 80:1130–1139

    Article  CAS  PubMed  Google Scholar 

  99. Voges B, Vallbracht S, Zimmer G, Bossow S, Neubert WJ, Richter K, Hobeika E, Herrler G, Ehl S (2007) Recombinant Sendai virus induces T cell immunity against respiratory syncytial virus that is protective in the absence of antibodies. Cell Immunol 247:85–94

    Article  CAS  PubMed  Google Scholar 

  100. Takimoto T, Hurwitz JL, Zhan X, Krishnamurthy S, Prouser C, Brown B, Coleclough C, Boyd K, Scroggs RA, Portner A et al (2005) Recombinant Sendai virus as a novel vaccine candidate for respiratory syncytial virus. Viral Immunol 18:255–266

    Article  CAS  PubMed  Google Scholar 

  101. Takimoto T, Hurwitz JL, Coleclough C, Prouser C, Krishnamurthy S, Zhan X, Boyd K, Scroggs RA, Brown B, Nagai Y et al (2004) Recombinant Sendai virus expressing the G glycoprotein of respiratory syncytial virus (RSV) elicits immune protection against RSV. J Virol 78:6043–6047

    Article  CAS  PubMed  Google Scholar 

  102. Hurwitz JL (2008) Development of recombinant Sendai virus vaccines for prevention of human parainfluenza and respiratory syncytial virus infections. Pediatr Infect Dis J 27:S126–S128

    Article  PubMed  Google Scholar 

  103. Kawano M, Kaito M, Kozuka Y, Komada H, Noda N, Nanba K, Tsurudome M, Ito M, Nishio M, Ito Y (2001) Recovery of infectious human parainfluenza type 2 virus from cDNA clones and properties of the defective virus without V-specific cysteine-rich domain. Virology 284:99–112

    Article  CAS  PubMed  Google Scholar 

  104. Skiadopoulos MH, Vogel L, Riggs JM, Surman SR, Collins PL, Murphy BR (2003) The genome length of human parainfluenza virus type 2 follows the rule of six, and recombinant viruses recovered from non-polyhexameric-length antigenomic cDNAs contain a biased distribution of correcting mutations. J Virol 77:270–279

    Article  CAS  PubMed  Google Scholar 

  105. Bartlett EJ, Amaro-Carambot E, Surman SR, Collins PL, Murphy BR, Skiadopoulos MH (2006) Introducing point and deletion mutations into the P/C gene of human parainfluenza virus type 1 (HPIV1) by reverse genetics generates attenuated and efficacious vaccine candidates. Vaccine 24:2674–2684

    Article  CAS  PubMed  Google Scholar 

  106. Bartlett EJ, Amaro-Carambot E, Surman SR, Newman JT, Collins PL, Murphy BR, Skiadopoulos MH (2005) Human parainfluenza virus type I (HPIV1) vaccine candidates designed by reverse genetics are attenuated and efficacious in African green monkeys. Vaccine 23:4631–4646

    Article  CAS  PubMed  Google Scholar 

  107. Bartlett EJ, Castano A, Surman SR, Collins PL, Skiadopoulos MH, Murphy BR (2007) Attenuation and efficacy of human parainfluenza virus type 1 (HPIV1) vaccine candidates containing stabilized mutations in the P/C and L genes. Virol J 4:67

    Article  PubMed  CAS  Google Scholar 

  108. Nolan SM, Skiadopoulos MH, Bradley K, Kim OS, Bier S, Amaro-Carambot E, Surman SR, Davis S, St Claire M, Elkins R et al (2007) Recombinant human parainfluenza virus type 2 vaccine candidates containing a 3' genomic promoter mutation and L polymerase mutations are attenuated and protective in non-human primates. Vaccine 25:6409–6422

    Article  CAS  PubMed  Google Scholar 

  109. Nolan SM, Surman SR, Amaro-Carambot E, Collins PL, Murphy BR, Skiadopoulos MH (2005) Live-attenuated intranasal parainfluenza virus type 2 vaccine candidates developed by reverse genetics containing L polymerase protein mutations imported from heterologous paramyxoviruses. Vaccine 23:4765–4774

    Article  CAS  PubMed  Google Scholar 

  110. Clements ML, Belshe RB, King J, Newman F, Westblom TU, Tierney EL, London WT, Murphy BR (1991) Evaluation of bovine, cold-adapted human, and wild-type human parainfluenza type 3 viruses in adult volunteers and in chimpanzees. J Clin Microbiol 29:1175–1182

    CAS  PubMed  Google Scholar 

  111. Karron RA, Makhene M, Gay K, Wilson MH, Clements ML, Murphy BR (1996) Evaluation of a live attenuated bovine parainfluenza type 3 vaccine in two- to six-month-old infants. Pediatr Infect Dis J 15:650–654

    Article  CAS  PubMed  Google Scholar 

  112. Haller AA, Mitiku M, MacPhail M (2003) Bovine parainfluenza virus type 3 (PIV3) expressing the respiratory syncytial virus (RSV) attachment and fusion proteins protects hamsters from challenge with human PIV3 and RSV. J Gen Virol 84:2153–2162

    Article  CAS  PubMed  Google Scholar 

  113. Schmidt AC, McAuliffe JM, Murphy BR, Collins PL (2001) Recombinant bovine/human parainfluenza virus type 3 (B/HPIV3) expressing the respiratory syncytial virus (RSV) G and F proteins can be used to achieve simultaneous mucosal immunization against RSV and HPIV3. J Virol 75:4594–4603

    Article  CAS  PubMed  Google Scholar 

  114. Schmidt AC, Wenzke DR, McAuliffe JM, St Claire M, Elkins WR, Murphy BR, Collins PL (2002) Mucosal immunization of rhesus monkeys against respiratory syncytial virus subgroups A and B and human parainfluenza virus type 3 by using a live cDNA-derived vaccine based on a host range-attenuated bovine parainfluenza virus type 3 vector backbone. J Virol 76:1089–1099

    Article  CAS  PubMed  Google Scholar 

  115. Tang RS, MacPhail M, Schickli JH, Kaur J, Robinson CL, Lawlor HA, Guzzetta JM, Spaete RR, Haller AA (2004) Parainfluenza virus type 3 expressing the native or soluble fusion (F) Protein of Respiratory Syncytial Virus (RSV) confers protection from RSV infection in African green monkeys. J Virol 78:11198–11207

    Article  CAS  PubMed  Google Scholar 

  116. Tang RS, Spaete RR, Thompson MW, MacPhail M, Guzzetta JM, Ryan PC, Reisinger K, Chandler P, Hilty M, Walker RE et al (2008) Development of a PIV-vectored RSV vaccine: preclinical evaluation of safety, toxicity, and enhanced disease and initial clinical testing in healthy adults. Vaccine 26:6373–6382

    Article  CAS  PubMed  Google Scholar 

  117. Gomez M, Mufson MA, Dubovsky F, Knightly C, Zeng W, Losonsky G (2009) Phase-I study MEDI-534, of a live, attenuated intranasal vaccine against respiratory syncytial virus and parainfluenza-3 virus in seropositive children. Pediatr Infect Dis J 28:655–658

    Article  PubMed  Google Scholar 

  118. Crowe JE Jr, Bui PT, Davis AR, Chanock RM, Murphy BR (1994) A further attenuated derivative of a cold-passaged temperature-sensitive mutant of human respiratory syncytial virus retains immunogenicity and protective efficacy against wild-type challenge in seronegative chimpanzees. Vaccine 12:783–790

    Article  PubMed  Google Scholar 

  119. Munir S, Le Nouen C, Luongo C, Buchholz UJ, Collins PL, Bukreyev A (2008) Nonstructural proteins 1 and 2 of respiratory syncytial virus suppress maturation of human dendritic cells. J Virol 82:8780–8796

    Article  CAS  PubMed  Google Scholar 

  120. Bukreyev A, Whitehead SS, Bukreyeva N, Murphy BR, Collins PL (1999) Interferon gamma expressed by a recombinant respiratory syncytial virus attenuates virus replication in mice without compromising immunogenicity. Proc Natl Acad Sci USA 96:2367–2372

    Article  CAS  PubMed  Google Scholar 

  121. Bukreyev A, Belyakov IM, Berzofsky JA, Murphy BR, Collins PL (2001) Granulocyte-macrophage colony-stimulating factor expressed by recombinant respiratory syncytial virus attenuates viral replication and increases the level of pulmonary antigen-presenting cells. J Virol 75:12128–12140

    Article  CAS  PubMed  Google Scholar 

  122. Bukreyev A, Belyakov IM, Prince GA, Yim KC, Harris KK, Berzofsky JA, Collins PL (2005) Expression of interleukin-4 by recombinant respiratory syncytial virus is associated with accelerated inflammation and a nonfunctional cytotoxic T-lymphocyte response following primary infection but not following challenge with wild-type virus. J Virol 79:9515–9526

    Article  CAS  PubMed  Google Scholar 

  123. Bukreyev A, Camargo E, Collins PL (1996) Recovery of infectious respiratory syncytial virus expressing an additional, foreign gene. J Virol 70:6634–6641

    CAS  PubMed  Google Scholar 

  124. Harker J, Bukreyev A, Collins PL, Wang B, Openshaw PJ, Tregoning JS (2007) Virally delivered cytokines alter the immune response to future lung infections. J Virol 81:13105–13111

    Article  CAS  PubMed  Google Scholar 

  125. Ball LA, Pringle CR, Flanagan B, Perepelitsa VP, Wertz GW (1999) Phenotypic consequences of rearranging the P, M, and G genes of vesicular stomatitis virus. J Virol 73:4705–4712

    CAS  PubMed  Google Scholar 

  126. Flanagan EB, Zamparo JM, Ball LA, Rodriguez LL, Wertz GW (2001) Rearrangement of the genes of vesicular stomatitis virus eliminates clinical disease in the natural host: new strategy for vaccine development. J Virol 75:6107–6114

    Article  CAS  PubMed  Google Scholar 

  127. Flanagan EB, Ball LA, Wertz GW (2000) Moving the glycoprotein gene of vesicular stomatitis virus to promoter-proximal positions accelerates and enhances the protective immune response. J Virol 74:7895–7902

    Article  CAS  PubMed  Google Scholar 

  128. Krempl C, Murphy BR, Collins PL (2002) Recombinant respiratory syncytial virus with the G and F genes shifted to the promoter-proximal positions. J Virol 76:11931–11942

    Article  CAS  PubMed  Google Scholar 

  129. Ternette N, Tippler B, Uberla K, Grunwald T (2007) Immunogenicity and efficacy of codon optimized DNA vaccines encoding the F-protein of respiratory syncytial virus. Vaccine 25:7271–7279

    Article  CAS  PubMed  Google Scholar 

  130. Saez-Llorens X, Castano E, Null D, Steichen J, Sanchez PJ, Ramilo O, Top FH Jr, Connor E (1998) Safety and pharmacokinetics of an intramuscular humanized monoclonal antibody to respiratory syncytial virus in premature infants and infants with bronchopulmonary dysplasia. The MEDI-493 study group. Pediatr Infect Dis J 17:787–791

    Article  CAS  PubMed  Google Scholar 

  131. Subramanian KN, Weisman LE, Rhodes T, Ariagno R, Sanchez PJ, Steichen J, Givner LB, Jennings TL, Top FH Jr, Carlin D et al (1998) Safety, tolerance and pharmacokinetics of a humanized monoclonal antibody to respiratory syncytial virus in premature infants and infants with bronchopulmonary dysplasia. MEDI-493 study group. Pediatr Infect Dis J 17:110–115

    Article  CAS  PubMed  Google Scholar 

  132. Lichtenstein DL, Roberts SR, Wertz GW, Ball LA (1996) Definition and functional analysis of the signal/anchor domain of the human respiratory syncytial virus glycoprotein G. J Gen Virol 77(Pt 1):109–118

    Article  CAS  PubMed  Google Scholar 

  133. Roberts SR, Lichtenstein D, Ball LA, Wertz GW (1994) The membrane-associated and secreted forms of the respiratory syncytial virus attachment glycoprotein G are synthesized from alternative initiation codons. J Virol 68:4538–4546

    CAS  PubMed  Google Scholar 

  134. Teng MN, Whitehead SS, Collins PL (2001) Contribution of the respiratory syncytial virus G glycoprotein and its secreted and membrane-bound forms to virus replication in vitro and in vivo. Virology 289:283–296

    Article  CAS  PubMed  Google Scholar 

  135. Bukreyev A, Serra ME, Laham FR, Melendi GA, Kleeberger SR, Collins PL, Polack FP (2006) The cysteine-rich region and secreted form of the attachment G glycoprotein of respiratory syncytial virus enhance the cytotoxic T-lymphocyte response despite lacking major histocompatibility complex class I-restricted epitopes. J Virol 80:5854–5861

    Article  CAS  PubMed  Google Scholar 

  136. Teng MN, Collins PL (2002) The central conserved cystine noose of the attachment G protein of human respiratory syncytial virus is not required for efficient viral infection in vitro or in vivo. J Virol 76:6164–6171

    Article  CAS  PubMed  Google Scholar 

  137. Spann KM, Collins PL, Teng MN (2003) Genetic recombination during coinfection of two mutants of human respiratory syncytial virus. J Virol 77:11201–11211

    Article  CAS  PubMed  Google Scholar 

  138. Luongo C, Yang L, Winter CC, Spann KM, Murphy BR, Collins PL, Buchholz UJ (2009) Codon stabilization analysis of the “248” temperature sensitive mutation for increased phenotypic stability of respiratory syncytial virus vaccine candidates. Vaccine 27:5667–5676

    Article  CAS  PubMed  Google Scholar 

  139. Arnold JJ, Vignuzzi M, Stone JK, Andino R, Cameron CE (2005) Remote site control of an active site fidelity checkpoint in a viral RNA-dependent RNA polymerase. J Biol Chem 280:25706–25716

    Article  CAS  PubMed  Google Scholar 

  140. Korneeva VS, Cameron CE (2007) Structure-function relationships of the viral RNA-dependent RNA polymerase: fidelity, replication speed, and initiation mechanism determined by a residue in the ribose-binding pocket. J Biol Chem 282:16135–16145

    Article  CAS  PubMed  Google Scholar 

  141. Vignuzzi M, Wendt E, Andino R (2008) Engineering attenuated virus vaccines by controlling replication fidelity. Nat Med 14:154–161

    Article  CAS  PubMed  Google Scholar 

  142. Castro C, Smidansky E, Maksimchuk KR, Arnold JJ, Korneeva VS, Gotte M, Konigsberg W, Cameron CE (2007) Two proton transfers in the transition state for nucleotidyl transfer catalyzed by RNA- and DNA-dependent RNA and DNA polymerases. Proc Natl Acad Sci USA 104:4267–4272

    Article  CAS  PubMed  Google Scholar 

  143. Castro C, Smidansky ED, Arnold JJ, Maksimchuk KR, Moustafa I, Uchida A, Gotte M, Konigsberg W, Cameron CE (2009) Nucleic acid polymerases use a general acid for nucleotidyl transfer. Nat Struct Mol Biol 16:212–218

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author would like to gratefully acknowledge the contribution of Kim C. Tran for producing the figures and table for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael N. Teng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel

About this chapter

Cite this chapter

Teng, M.N. (2011). Live Attenuated Vaccines for Respiratory Syncytial Virus. In: Dormitzer, P., Mandl, C., Rappuoli, R. (eds) Replicating Vaccines. Birkhäuser Advances in Infectious Diseases. Springer, Basel. https://doi.org/10.1007/978-3-0346-0277-8_10

Download citation

Publish with us

Policies and ethics