Skip to main content

mGluR1 Negative Allosteric Modulators: An Alternative Metabotropic Approach for the Treatment of Schizophrenia

  • Chapter
  • First Online:
Glutamate-based Therapies for Psychiatric Disorders

Part of the book series: Milestones in Drug Therapy ((MDT))

  • 759 Accesses

Abstract

The potential utility of mGluR1 negative allosteric modulators (NAMs) for treatment of schizophrenia is based on the pharmacological effects of mGluR1 NAMs in animal models for schizophrenia. An mGluR1 NAM antagonized hyperlocomotion and the deficit in prepulse inhibition (PPI) in rodents caused by an indirect dopamine (DA) agonist, methamphetamine as well as by a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, ketamine. In addition, an mGluR1 NAM reversed reduced social interaction by dizocilpine (MK-801) in rats. The antipsychotic-like effects of mGluR1 NAMs are similar to those of the atypical antipsychotic, clozapine, but not of the typical antipsychotic, haloperidol, based on behavioral changes as well as distribution of c-fos expression after the treatment. The similarities and differences between mGluR1 NAMs and mGluR2/3 agonists are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT:

Serotonin

AIDA:

(RS)-1-aminoindan-1,5-dicarboxylic acid

BAY36-7620:

(3aS,6aS)-6a-naphtalan-2-ylmethyl-5-methyliden-hexahydro-cyclopental[c]furan-1-on

CFMTI:

2-cyclopropyl-5-[1-(2-fluoro-3-pyridinyl)-5-methyl-1H-1,2,3-triazol-4-yl]-2,3-dihydro-1H-isoindol-1-one

CNS:

Central nervous system

CPCCOEt:

7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester

DA:

Dopamine

DHPG:

3,5-dihydroxyphenylglycine

dlSTR:

dorsolateral striatum

EMQMCM:

(3-ethyl-2-methyl-quinolin-6-yl)(4-methoxy-cyclohexyl)methanone methansulfonate

FTIDC:

4-[1-(2-fluoropyridin-3-yl)-5-methyl-1H-1,2,3-triazol-4-yl]-N-isopropyl-N-methyl-3,6-dihydropyridine-1(2H)-carboxamide

iGluR:

ionotropic glutamate receptor

JNJ16259685:

(3,4-dihydro-2H-pyrano[2,3]b quinolin-7-yl) (cis-4-methoxycyclohexyl) methanone

LY354740:

(1S,2S,5R,6S)-2-aminobicyclo[3.1.0] hexane-2,6-dicarboxylate monohydrate

LY367385:

(+)-2-methyl-4-carboxyphenylglycine

LY379268:

(1R,4R,5S,6R)-4-amino-2-oxabicyclo[3.1.0]hexane-4,6-dicarboxylic acid

LY456236:

(4-methoxy-phenyl)-(6-methoxy-quinazolin-4-yl)-amine, HCl

MAP:

Methamphetamine

mGluR:

metabotropic glutamate receptor

MK-801:

(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate

MPEP:

2-methyl-6-(phenylethynyl)pyridine

mPFC:

medial prefrontal cortex

MTEP:

3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine

NAC:

Nucleus accumbens

NAM:

Negative allosteric modulator

NMDA:

N-methyl-d-aspartate

PCP:

Phencyclidine

PFC:

Prefrontal cortex

PPI:

Prepulse inhibition

VTA:

Ventrotegmental area

YM-230888:

N-cycloheptyl-6-({[(2R)-tetrahydrofuran-2-ylmethyl]amino}methyl)thieno[2,3-d]pyrimidin-4-amine

References

  1. Andreasen NC (2000) Schizophrenia: the fundamental questions. Brain Res Rev 31:106–112

    Article  PubMed  CAS  Google Scholar 

  2. Laborit H (1949) Sur l’utilization de certain agents pharmacodynamiques a action neuro-vegetative en periode per- and post-operatioire. Acta Chir Belg 87:485–492

    Google Scholar 

  3. Carlsson A, Lindquist M (1963) Effect of chlorpromazine and haloperidol on the formation of 3-methoxytyramine in mouse brain. Acta Pharmacol Toxicol 20:140–144

    Article  CAS  Google Scholar 

  4. Sovner R, DiMascio A (1978) Extrapyramdal syndrome and other neurological side effects of psychotropic drugs. In: Lipton MA, DiMascio A, Killam KF (eds) Psychopharmacology: a generation of progress. Raven Press, New York, pp 1021–1032

    Google Scholar 

  5. Baldessarini RJ, Tarsy D (1978) Tardive dyskinesia. In: Lipton MA, DiMascio A, Killam KF (eds) Psychopharmacology: a generation of progress. Raven Press, New York, pp 993–1004

    Google Scholar 

  6. Kane J, Honigfeld G, Singer J, Meltzer H (1988) Clozapine for the treatment-resistant schizophrenic A double-blind comparison with chlorpromazine. Arch Gen Psychiatry 45:789–796

    Article  PubMed  CAS  Google Scholar 

  7. Sur C, Mallorga PJ, Wittmann M, Jacobson MA, Pascarella D, Williams JB, Brandish PE, Pettibone DJ, Scolnick EM, Conn PJ (2003) N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-d-aspartate receptor activity. Proc Natl Acad Sci USA 100:13674–13679

    Article  PubMed  CAS  Google Scholar 

  8. Javitt DC, Zukin SR (1991) Recent advance in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308

    PubMed  CAS  Google Scholar 

  9. Lahti AC, Koffel B, LaPorte D, Tamminga CA (1995) Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology 13:9–19

    Article  PubMed  CAS  Google Scholar 

  10. Moghaddam B, Adams BW (1998) Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 281:1349–1352

    Article  PubMed  CAS  Google Scholar 

  11. Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, Avedisova AS, Bardenstein LM, Gurovich IY, Morozova MA et al (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized phase 2 clinical trial. Nat Med 13:1102–1107

    Article  PubMed  CAS  Google Scholar 

  12. De Blasi A, Conn PJ, Pin JP, Nicoletti F (2001) Molecular determinants of metabotropic glutamate receptor signaling. Trends Pharmacol Sci 22:114–120

    Article  PubMed  Google Scholar 

  13. Spooren W, Ballard T, Gasparini F, Amalric M, Mutel V, Schreiber R (2003) Insight into the function of group I and group II metabotropic glutamate (mGlu) receptors: behavioral characterization and implications for the treatment of CNS disorders. Behav Pharmacol 14:257–277

    Article  PubMed  CAS  Google Scholar 

  14. Shigemoto R, Nakanishi S, Mizuno N (1992) Distribution of the mRNA for a metabotropic glutamate receptor (mGluR1) in the central nervous system: an in situ hybridization study in adult and developing rat. J Comp Neurol 322:121–135

    Article  PubMed  CAS  Google Scholar 

  15. Nakajima Y, Iwakabe H, Akazawa C, Nawa H, Shigemoto R, Mizuno N, Nakanishi S (1993) Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. J Biol Chem 268:11868–11873

    PubMed  CAS  Google Scholar 

  16. Kłodzińska A, Chojnacka-Wójcik E, Pałucha A, Brański P, Popik P, Pilc A (1999) Potential anti-anxiety, anti-addictive effects of LY 354740, a selective group II glutamate metabotropic receptors agonist in animal models. Neuropharmacology 38:1831–1839

    Article  PubMed  Google Scholar 

  17. Cartmell J, Monn JA, Schoepp DD (2000) The mGlu(2/3) receptor agonist LY379268 selectively blocks amphetamine ambulations and rearing. Eur J Pharmacol 400:221–224

    Article  PubMed  CAS  Google Scholar 

  18. Grillon C, Cordova J, Levine LR, Morgan CA III (2003) Anxiolytic effects of a novel group II metabotropic glutamate receptor agonist (LY354740) in the fear-potentiated startle paradigm in humans. Psychopharmacology (Berl) 168:446–454

    Article  CAS  Google Scholar 

  19. Simmons RM, Webster AA, Kalra AB, Iyengar S (2002) Group II mGluR receptor agonists are effective in persistent and neuropathic pain models in rats. Pharmacol Biochem Behav 73:419–427

    Article  PubMed  CAS  Google Scholar 

  20. Fundytus ME (2001) Glutamate receptors and nociception. CNS Drugs 15:29–58

    Article  PubMed  CAS  Google Scholar 

  21. Javitt DC (2004) Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry 9:984–997

    Article  PubMed  CAS  Google Scholar 

  22. Grauer SM, Marquis KL (1999) Intracerebral administration of metabotropic glutamate receptor agonists disrupts prepulse inhibition of acoustic startle in Sprague-Dawley rats. Psychopharmacology (Berl) 141:405–412

    Article  CAS  Google Scholar 

  23. De Vry J, Horváth E, Schreiber R (2001) Neuroprotective and behavioral effects of the selective metabotropic glutamate mGlu1 receptor antagonist BAY 36-7620. Eur J Pharmacol 428:203–214

    Article  PubMed  Google Scholar 

  24. Lavreysen H, Pereira SN, Leysen JE, Langlois X, Lesage ASJ (2004) Metabotropic glutamate 1 receptor distribution and occupancy in the rat brain: a quantitative autoradiographic study using [3H]R214127. Neuropharmacology 46:609–619

    Article  PubMed  CAS  Google Scholar 

  25. Lavreysen H, Wouters R, Bischoff F, Nóbrega Pereira S, Langlois X, Blokland S, Somers M, Dillen L, Lesage ASJ (2004) JNJ16259685, a highly potent, selective and systemically active mGlu1 receptor antagonist. Neuropharmacology 47:961–972

    Google Scholar 

  26. Suzuki G, Kimura T, Satow A, Kaneko N, Fukuda J, Hikichi H, Sakai N, Maehara S, Kawagoe-Takaki H, Hata M et al (2007) Pharmacological characterization of a new, orally active and potent allosteric metabotropic glutamate receptor 1 antagonist, 4-[1-(2-Fluoropyridin-3-yl)-5-methyl-1H–1, 2, 3-triazol-4-yl]-N-isopropyl-N-methyl-3, 6- dihydropyridine-1(2H)-carboxamide (FTIDC). J Pharmacol Exp Ther 321:1144–1153

    Article  PubMed  CAS  Google Scholar 

  27. Satow A, Maehara S, Ise S, Hikichi H, Fukushima M, Suzuki G, Kimura T, Tanaka T, Ito S, Kawamoto H et al (2008) Pharmacological effects of the metabotropic glutamate receptor 1 antagonist compared with those of the metabotropic glutamate receptor 5 antagonist and metabotropic glutamate receptor 2/3 agonist in rodents: detailed investigations with a selective allosteric mGluR1 antagonist, FTIDC, (4-[1-(2-fluoropyridine-3-yl)-5-methyl-1H-1,2,3-triazol-4-yl]-N-isopropyl-N-methyl-3,6-dihydropyridine-1(2H)-carboxamide). J Pharmacol Exp Ther 326:577–586

    Article  PubMed  CAS  Google Scholar 

  28. Satow A, Suzuki G, Maehara S, Hikichi H, Murai T, Murai T, Kawagoe-Takaki H, Hata M, Ito S, Ozaki S et al (2009) Unique antipsychotic activities of the selective metabotropic glutamate receptor 1 allosteric antagonist 2-cyclopropyl-5-[1-(2-fluoro-3-pyridinyl)-5-methyl-1H–1, 2, 3-triazol-4-yl]-2, 3-dihydro-1H-isoindol-1-one. J Pharmacol Exp Ther 330:179–190

    Article  PubMed  CAS  Google Scholar 

  29. Suzuki G, Kawagoe-Takaki H, Inoue T, Kimura T, Hikichi H, Murai T, Satow A, Hata M, Maehara S, Ito S et al (2009) Correlation of receptor occupancy of metabotropic glutamate receptor subtype 1 (mGluR1) in mouse brain with in vivo activity of allosteric mGluR1 antagonists. J Pharmacol Sci 110:315–325

    Article  PubMed  CAS  Google Scholar 

  30. Hikichi H, Iwahori Y, Murai T, Maehara S, Satow A, Ohta H (2008) Face-washing behavior induced by the group I metabotropic glutamate receptor agonist (S)-3, 5-DHPG in mice is mediated by mGlu1 receptor. Eur J Pharmacol 586:212–216

    Article  PubMed  CAS  Google Scholar 

  31. Renoldi G, Calcagno E, Borsini F, Invernizzi RW (2006) Stimulation of group I mGlu receptors in the ventrotegmental area enhances extracellular dopamine in the rat medial prefrontal cortex. J Neurochem 100:1658–1666

    PubMed  Google Scholar 

  32. Greenslade RG, Mitchell SN (2004) Selective action of (-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4, 6-dicarboxylate (LY379268), a group II metabotropic glutamate receptor agonist, on basal and phencyclidine-induced dopamine release in the nucleus accumbens shell. Neuropharmacology 47:1–8

    Article  PubMed  CAS  Google Scholar 

  33. Braff DL, Grillon C, Geyer MA (1992) Gating and habituation of the startle reflex in schizophrenic patients. Arch Gen Psychiatry 49:206–215

    Article  PubMed  CAS  Google Scholar 

  34. Carlsson A, Hansson LO, Waters N, Carlsson ML (1997) Neurotransmitter aberrations in schizophrenia: new perspectives and therapeutic implications. Life Sci 61:75–94

    Article  PubMed  CAS  Google Scholar 

  35. Brody SA, Conquet F, Geyer MA (2003) Disruption of prepulse inhibition in mice lacking mGluR1. Eur J Neurosci 18:3361–3366

    Article  PubMed  CAS  Google Scholar 

  36. Aiba A, Kano M, Chen C, Stanton ME, Fox GD, Herrup K, Zwingman TA, Tonegawa S (1994) Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell 79:377–388

    Article  PubMed  CAS  Google Scholar 

  37. Kinney GG, Burno M, Campbell UC, Hernandez LM, Rodriguez D, Bristow LJ, Conn PJ (2003) Metabotropic glutamate subtype 5 receptors modulate locomotor activity and sensorimotor gating in rodents. J Pharmacol Exp Ther 306:116–123

    Article  PubMed  CAS  Google Scholar 

  38. Pietraszek M, Gravius A, Schäfer D, Weil T, Trifanova D, Danysz W (2005) mGluR5, but not mGluR1, antagonist modifies MK-801-induced locomotor activity and deficit of prepulse inhibition. Neuropharmacology 49:73–85

    Article  PubMed  CAS  Google Scholar 

  39. Moghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17:2921–2922

    PubMed  CAS  Google Scholar 

  40. Schreiber R, Lowe D, Voerste A, De Vry J (2000) LY354740 affects startle responding but not sensorimotor gating or discriminative effects of phencyclidine. Eur J Pharmacol 388:R3–R4

    Article  PubMed  CAS  Google Scholar 

  41. Musante V, Neri E, Feligioni M, Puliti A, Pedrazzi M, Conti V, Usai C, Diaspro A, Ravazzolo R, Henley JM, Battaglia G, Pittaluga A (2008) Presynaptic mGlu1 and mGlu5 autoreceptors facilitate glutamate exocytosis from mouse cortical nerve endings. Neuropharmacology 55:474–482

    Article  PubMed  CAS  Google Scholar 

  42. Melendez RI, Vuthiganon J, Kalivas PW (2005) Regulation of extracellular glutamate in the prefrontal cortex: focus on the cystine glutamate exchanger and group I metabotropic glutamate receptors. J Pharmacol Exp Ther 314:139–147

    Article  PubMed  CAS  Google Scholar 

  43. Paz RD, Tardito S, Atzori M, Tseng KY (2008) Glutamatergic dysfunction in schizophrenia: from basic neuroscience to clinical psychopharmacology. Eur Neuropsychopharmacol 18:773–786

    Article  PubMed  CAS  Google Scholar 

  44. Robertson GS, Matsumura H, Fibiger HC (1994) Induction patterns of Fos-like immunoreactivity in the forebrain as predictors of atypical antipsychotic activity. J Pharmacol Exp Ther 271:1058–1066

    PubMed  CAS  Google Scholar 

  45. Sumner BE, Cruise LA, Slattery DA, Hill DR, Shahid M, Henry B (2004) Testing the validity of c-fos expression profiling to aid the therapeutic classification of psychoactive drugs. Psychopharmacology (Berl) 171:306–321

    Article  CAS  Google Scholar 

  46. Sillevis Smitt P, Kinoshita A, De Leeuw B, Moll W, Coesmans M, Jaarsma D, Henzen-Logmans S, Vecht C, De Zeeuw C et al (2000) Paraneoplastic cerebellar ataxia due to autoantibodies against a glutamate receptor. N Engl J Med 342:21–27

    Article  PubMed  CAS  Google Scholar 

  47. Steckler T, Oliveira AF, Van Dyck C, Van Craenendonck H, Mateus AM, Langlois X, Lesage ASJ, Prickaerts J (2005) Metabotropic glutamate receptor 1 blockade impairs acquisition and retention in a spatial Water maze task. Behav Brain Res 164:52–60

    Article  PubMed  CAS  Google Scholar 

  48. Murai T, Okuda S, Tanaka T, Ohta H (2007) Characteristics of object location memory in mice: behavioral and pharmacological studies. Physiol Behav 90:116–124

    Article  PubMed  CAS  Google Scholar 

  49. Meltzer HY, McGurk SR (1999) The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr Bull 25:233–255

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Satoru Itoh, Hirohiko Hikichi, Shunsuke Maehara, Toshifumi Kimura, and Akio Satow who conducted studies with FTIDC and CFMTI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Ohta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Basel

About this chapter

Cite this chapter

Ohta, H., Kawamoto, H., Suzuki, G. (2010). mGluR1 Negative Allosteric Modulators: An Alternative Metabotropic Approach for the Treatment of Schizophrenia. In: Skolnick, P. (eds) Glutamate-based Therapies for Psychiatric Disorders. Milestones in Drug Therapy. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0346-0241-9_7

Download citation

Publish with us

Policies and ethics