Skip to main content

Activation of Group II Metabotropic Glutamate Receptors (mGluR2 and mGluR3) as a Novel Approach for Treatment of Schizophrenia

  • Chapter
  • First Online:
Glutamate-based Therapies for Psychiatric Disorders

Part of the book series: Milestones in Drug Therapy ((MDT))

Abstract

In the last decade, many advances have suggested that activators of mGluR2 and/or mGluR3 may provide a novel approach for the treatment of schizophrenia. Preclinical and clinical studies with traditional orthosteric agonists nonselective for mGluR2 and mGluR3 have provided key studies demonstrating the viability of this approach. Recent advances in allosteric ligand development have led to the discovery of positive allosteric modulators (PAMs) selective for mGluR2, which have demonstrated efficacy in animal models predictive of antipsychotic activity. These mGluR2 PAMs, in conjunction with studies in mGluR2, mGluR3, and mGluR2/3 knockout mice, have suggested that mGluR2 may be the predominant receptor responsible for the antipsychotic efficacy of nonselective mGluR2/3 agonists. Recently, a heterocomplex between mGluR2 and the 5-HT2A serotonin receptor has been reported with functional consequences for both receptors, providing a novel target for therapeutic development. Together, these many advances have provided a strong foundation for the continued development of mGluR2/3 activators as a novel approach for the treatment of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lang UE et al (2007) Molecular mechanisms of schizophrenia. Cell Physiol Biochem 20(6):687–702

    Article  PubMed  CAS  Google Scholar 

  2. Wu EQ et al (2005) The economic burden of schizophrenia in the United States in 2002. J Clin Psychiatry 66(9):1122–1129

    Article  PubMed  Google Scholar 

  3. Conn PJ, Lindsley CW, Jones CK (2009) Activation of metabotropic glutamate receptors as a novel approach for the treatment of schizophrenia. Trends Pharmacol Sci 30(1):25–31

    Article  PubMed  CAS  Google Scholar 

  4. Conn PJ et al (2008) Schizophrenia: moving beyond monoamine antagonists. Mol Interv 8(2):99–107

    Article  PubMed  CAS  Google Scholar 

  5. Meltzer HY (1999) Treatment of schizophrenia and spectrum disorders: pharmacotherapy, psychosocial treatments, and neurotransmitter interactions. Biol Psychiatry 46(10): 1321–1327

    Article  PubMed  CAS  Google Scholar 

  6. Tan HY, Callicott JH, Weinberger DR (2007) Dysfunctional and compensatory prefrontal cortical systems, genes and the pathogenesis of schizophrenia. Cereb Cortex 17(Suppl 1): 171–181

    Article  Google Scholar 

  7. Gray JA, Roth BL (2007) The pipeline and future of drug development in schizophrenia. Mol Psychiatry 12(10):904–922

    Article  PubMed  CAS  Google Scholar 

  8. Purdon SE et al (2001) Neuropsychological change in patients with schizophrenia after treatment with quetiapine or haloperidol. J Psychiatry Neurosci 26(2):137–149

    PubMed  CAS  Google Scholar 

  9. Nikam SS, Awasthi AK (2008) Evolution of schizophrenia drugs: a focus on dopaminergic systems. Curr Opin Investig Drugs 9(1):37–46

    PubMed  CAS  Google Scholar 

  10. Lamberti JS et al (2006) Prevalence of the metabolic syndrome among patients receiving clozapine. Am J Psychiatry 163(7):1273–1276

    Article  PubMed  Google Scholar 

  11. Alvir JM et al (1993) Clozapine-induced agranulocytosis. Incidence and risk factors in the United States. N Engl J Med 329(3):162–167

    Article  PubMed  CAS  Google Scholar 

  12. Toda M, Abi-Dargham A (2007) Dopamine hypothesis of schizophrenia: making sense of it all. Curr Psychiatry Rep 9(4):329–336

    Article  PubMed  Google Scholar 

  13. Miyamoto S et al (2003) Recent advances in the neurobiology of schizophrenia. Mol Interv 3(1):27–39

    Article  PubMed  Google Scholar 

  14. Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192(4238):481–483

    Article  PubMed  CAS  Google Scholar 

  15. Breier A et al (1998) Effects of NMDA antagonism on striatal dopamine release in healthy subjects: application of a novel PET approach. Synapse 29(2):142–147

    Article  PubMed  CAS  Google Scholar 

  16. Breier A et al (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci USA 94(6):2569–2574

    Article  PubMed  CAS  Google Scholar 

  17. Laruelle M et al (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci USA 93(17):9235–9240

    Article  PubMed  CAS  Google Scholar 

  18. Laruelle M et al (1997) Imaging D2 receptor occupancy by endogenous dopamine in humans. Neuropsychopharmacology 17(3):162–174

    Article  PubMed  CAS  Google Scholar 

  19. Hirsch S, Barnes TRE (1995) The clinical treatment of schizophrenia with antipsychotic medication. In: Hirsch and Weinberger (eds) Schizophrenia, Blackwell Science,Oxford, UK, pp 443–468

    Google Scholar 

  20. Mohn AR et al (1999) Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98(4):427–436

    Article  PubMed  CAS  Google Scholar 

  21. Meltzer HY, Matsubara S, Lee JC (1989) Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J Pharmacol Exp Ther 251(1):238–246

    PubMed  CAS  Google Scholar 

  22. de Paulis T (2001) M-100907 (Aventis). Curr Opin Investig Drugs 2(1):123–132

    PubMed  Google Scholar 

  23. Dingledine R et al (1999) The glutamate receptor ion channels. Pharmacol Rev 51(1):7–61

    PubMed  CAS  Google Scholar 

  24. Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148(10):1301–1308

    PubMed  CAS  Google Scholar 

  25. Krystal JH et al (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51(3):199–214

    Article  PubMed  CAS  Google Scholar 

  26. Shulgin AT (1964) 3-Methoxy-4, 5-methylenedioxy amphetamine, a new psychotomimetic agent. Nature 201:1120–1121

    Article  PubMed  CAS  Google Scholar 

  27. Faustman WO et al (1999) Cerebrospinal fluid glutamate inversely correlates with positive symptom severity in unmedicated male schizophrenic/schizoaffective patients. Biol Psychiatry 45(1):68–75

    Article  PubMed  CAS  Google Scholar 

  28. Sherman AD et al (1991) Deficient NMDA-mediated glutamate release from synaptosomes of schizophrenics. Biol Psychiatry 30(12):1191–1198

    Article  PubMed  CAS  Google Scholar 

  29. Akbarian S et al (1996) Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics. J Neurosci 16(1):19–30

    PubMed  CAS  Google Scholar 

  30. Gao XM et al (2000) Ionotropic glutamate receptors and expression of N-methyl-d-aspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia. Am J Psychiatry 157(7):1141–1149

    Article  PubMed  CAS  Google Scholar 

  31. Law AJ, Deakin JF (2001) Asymmetrical reductions of hippocampal NMDAR1 glutamate receptor mRNA in the psychoses. NeuroReport 12(13):2971–2974

    Article  PubMed  CAS  Google Scholar 

  32. Coyle JT (2006) Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol 26(4–6):365–384

    PubMed  CAS  Google Scholar 

  33. Lindsley CW et al (2006) Progress towards validating the NMDA receptor hypofunction hypothesis of schizophrenia. Curr Top Med Chem 6(8):771–785

    Article  PubMed  CAS  Google Scholar 

  34. Chavez-Noriega LE et al (2005) Novel potential therapeutics for schizophrenia: focus on the modulation of metabotropic glutamate receptor function. Curr Neuropharmacol 3(1):9–34

    Article  CAS  Google Scholar 

  35. Marino MJ, Conn PJ (2002) Direct and indirect modulation of the N-methyl d-aspartate receptor. Curr Drug Targets CNS Neurol Disord 1(1):1–16

    Article  PubMed  CAS  Google Scholar 

  36. Kristiansen LV et al (2007) NMDA receptors and schizophrenia. Curr Opin Pharmacol 7(1):48–55

    Article  PubMed  CAS  Google Scholar 

  37. Spooren W et al (2003) Insight into the function of Group I and Group II metabotropic glutamate (mGlu) receptors: behavioural characterization and implications for the treatment of CNS disorders. Behav Pharmacol 14(4):257–277

    Article  PubMed  CAS  Google Scholar 

  38. Svensson TH (2000) Dysfunctional brain dopamine systems induced by psychotomimetic NMDA-receptor antagonists and the effects of antipsychotic drugs. Brain Res Brain Res Rev 31(2–3):320–329

    Article  PubMed  CAS  Google Scholar 

  39. Lisman JE et al (2008) Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci 31(5):234–242

    Article  PubMed  CAS  Google Scholar 

  40. Carlsson A et al (2001) Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 41:237–260

    Article  PubMed  CAS  Google Scholar 

  41. Greene R (2001) Circuit analysis of NMDAR hypofunction in the hippocampus, in vitro, and psychosis of schizophrenia. Hippocampus 11(5):569–577

    Article  PubMed  CAS  Google Scholar 

  42. Tsai G, Coyle JT (2002) Glutamatergic mechanisms in schizophrenia. Annu Rev Pharmacol Toxicol 42:165–179

    Article  PubMed  CAS  Google Scholar 

  43. Benes FM et al (1998) A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives. Biol Psychiatry 44(2):88–97

    Article  PubMed  CAS  Google Scholar 

  44. Benes FM, Vincent SL, Todtenkopf M (2001) The density of pyramidal and nonpyramidal neurons in anterior cingulate cortex of schizophrenic and bipolar subjects. Biol Psychiatry 50(6):395–406

    Article  PubMed  CAS  Google Scholar 

  45. Aghajanian GK, Marek GJ (2000) Serotonin model of schizophrenia: emerging role of glutamate mechanisms. Brain Res Brain Res Rev 31(2–3):302–312

    Article  PubMed  CAS  Google Scholar 

  46. Carlsson A et al (1997) Neurotransmitter aberrations in schizophrenia: new perspectives and therapeutic implications. Life Sci 61(2):75–94

    Article  PubMed  CAS  Google Scholar 

  47. Moreno JL, Sealfon SC, Gonzalez-Maeso J (2009) Group II metabotropic glutamate receptors and schizophrenia. Cell Mol Life Sci 66(23):3777–3785

    Article  PubMed  CAS  Google Scholar 

  48. Fraley ME (2009) Positive allosteric modulators of the metabotropic glutamate receptor 2 for the treatment of schizophrenia. Expert Opin Ther Pat 19(9):1259–1275

    Article  PubMed  CAS  Google Scholar 

  49. Pin JP, Duvoisin R (1995) The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34(1):1–26

    Article  PubMed  CAS  Google Scholar 

  50. Anwyl R (1999) Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res Brain Res Rev 29(1):83–120

    Article  PubMed  CAS  Google Scholar 

  51. Nakanishi S (1994) Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. Neuron 13(5):1031–1037

    Article  PubMed  CAS  Google Scholar 

  52. Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237

    Article  PubMed  CAS  Google Scholar 

  53. Coutinho V, Knopfel T (2002) Metabotropic glutamate receptors: electrical and chemical signaling properties. Neuroscientist 8(6):551–561

    Article  PubMed  CAS  Google Scholar 

  54. Schoepp DD, Marek GJ (2002) Preclinical pharmacology of mGlu2/3 receptor agonists: novel agents for schizophrenia? Curr Drug Targets CNS Neurol Disord 1(2):215–225

    Article  CAS  Google Scholar 

  55. Forsythe ID, Barnes-Davies M (1997) Synaptic transmission: well-placed modulators. Curr Biol 7(6):R362–R365

    Article  PubMed  CAS  Google Scholar 

  56. Ohishi H et al (1993) Distribution of the mRNA for a metabotropic glutamate receptor (mGluR3) in the rat brain: an in situ hybridization study. J Comp Neurol 335(2):252–266

    Article  PubMed  CAS  Google Scholar 

  57. Fotuhi M et al (1994) Differential expression of metabotropic glutamate receptors in the hippocampus and entorhinal cortex of the rat. Brain Res Mol Brain Res 21(3–4):283–292

    Article  PubMed  CAS  Google Scholar 

  58. Macek TA et al (1996) Differential involvement of group II and group III mGluRs as autoreceptors at lateral and medial perforant path synapses. J Neurophysiol 76(6):3798–3806

    PubMed  CAS  Google Scholar 

  59. Nicholls RE et al (2006) mGluR2 acts through inhibitory Galpha subunits to regulate transmission and long-term plasticity at hippocampal mossy fiber-CA3 synapses. Proc Natl Acad Sci USA 103(16):6380–6385

    Article  PubMed  CAS  Google Scholar 

  60. Doherty JJ et al (2004) Metabotropic glutamate receptors modulate feedback inhibition in a developmentally regulated manner in rat dentate gyrus. J Physiol 561(Pt 2):395–401

    Article  PubMed  CAS  Google Scholar 

  61. Lorrain DS et al (2003) Effects of ketamine and N-methyl-d-aspartate on glutamate and dopamine release in the rat prefrontal cortex: modulation by a group II selective metabotropic glutamate receptor agonist LY379268. Neuroscience 117(3):697–706

    Article  PubMed  CAS  Google Scholar 

  62. Moghaddam B, Adams BW (1998) Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 281(5381):1349–1352

    Article  PubMed  CAS  Google Scholar 

  63. Marek GJ et al (2000) Physiological antagonism between 5-hydroxytryptamine(2A) and group II metabotropic glutamate receptors in prefrontal cortex. J Pharmacol Exp Ther 292(1):76–87

    PubMed  CAS  Google Scholar 

  64. Cartmell J, Monn JA, Schoepp DD (1999) The metabotropic glutamate 2/3 receptor agonists LY354740 and LY379268 selectively attenuate phencyclidine versus d-amphetamine motor behaviors in rats. J Pharmacol Exp Ther 291(1):161–170

    PubMed  CAS  Google Scholar 

  65. Krystal JH et al (2005) Preliminary evidence of attenuation of the disruptive effects of the NMDA glutamate receptor antagonist, ketamine, on working memory by pretreatment with the group II metabotropic glutamate receptor agonist, LY354740, in healthy human subjects. Psychopharmacology (Berl) 179(1):303–309

    Article  CAS  Google Scholar 

  66. Patil ST et al (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med 13(9):1102–1107

    Article  PubMed  CAS  Google Scholar 

  67. Galici R et al (2005) A selective allosteric potentiator of metabotropic glutamate (mGlu) 2 receptors has effects similar to an orthosteric mGlu2/3 receptor agonist in mouse models predictive of antipsychotic activity. J Pharmacol Exp Ther 315(3):1181–1187

    Article  PubMed  CAS  Google Scholar 

  68. Fell MJ et al (2008) Evidence for the role of metabotropic glutamate (mGlu)2 not mGlu3 receptors in the preclinical antipsychotic pharmacology of the mGlu2/3 receptor agonist (−)-(1R, 4S, 5S, 6S)-4-amino-2-sulfonylbicyclo[3.1.0]hexane-4, 6-dicarboxylic acid (LY404039). J Pharmacol Exp Ther 326(1):209–217

    Article  PubMed  CAS  Google Scholar 

  69. Woolley ML et al (2008) The mGlu2 but not the mGlu3 receptor mediates the actions of the mGluR2/3 agonist, LY379268, in mouse models predictive of antipsychotic activity. Psychopharmacology (Berl) 196(3):431–440

    Article  CAS  Google Scholar 

  70. Johnson MP et al (2003) Discovery of allosteric potentiators for the metabotropic glutamate 2 receptor: synthesis and subtype selectivity of N-(4-(2-methoxyphenoxy)phenyl)-N-(2, 2, 2-trifluoroethylsulfonyl)pyrid-3-ylmethylamine. J Med Chem 46(15):3189–3192

    Article  PubMed  CAS  Google Scholar 

  71. Cube RV et al (2005) 3-(2-Ethoxy-4-{4-[3-hydroxy-2-methyl-4-(3-methylbutanoyl)phenoxy]butoxy}ph enyl)propanoic acid: a brain penetrant allosteric potentiator at the metabotropic glutamate receptor 2 (mGluR2). Bioorg Med Chem Lett 15(9):2389–2393

    Article  PubMed  CAS  Google Scholar 

  72. Pinkerton AB et al (2005) Allosteric potentiators of the metabotropic glutamate receptor 2 (mGlu2). Part 3: Identification and biological activity of indanone containing mGlu2 receptor potentiators. Bioorg Med Chem Lett 15(6):1565–1571

    Article  PubMed  CAS  Google Scholar 

  73. Galici R et al (2006) Biphenyl-indanone A, a positive allosteric modulator of the metabotropic glutamate receptor subtype 2, has antipsychotic- and anxiolytic-like effects in mice. J Pharmacol Exp Ther 318(1):173–185

    Article  PubMed  CAS  Google Scholar 

  74. Schaffhauser H et al (2003) Pharmacological characterization and identification of amino acids involved in the positive modulation of metabotropic glutamate receptor subtype 2. Mol Pharmacol 64(4):798–810

    Article  PubMed  CAS  Google Scholar 

  75. Rowe BA et al (2008) Transposition of three amino acids transforms the human metabotropic glutamate receptor (mGluR)-3-positive allosteric modulation site to mGluR2, and additional characterization of the mGluR2-positive allosteric modulation site. J Pharmacol Exp Ther 326(1):240–251

    Article  PubMed  CAS  Google Scholar 

  76. Benneyworth MA et al (2007) A selective positive allosteric modulator of metabotropic glutamate receptor subtype 2 blocks a hallucinogenic drug model of psychosis. Mol Pharmacol 72(2):477–484

    Article  PubMed  CAS  Google Scholar 

  77. Poisik O et al (2005) Metabotropic glutamate receptor 2 modulates excitatory synaptic transmission in the rat globus pallidus. Neuropharmacology 49(Suppl 1):57–69

    Article  PubMed  CAS  Google Scholar 

  78. Govek SP et al (2005) Benzazoles as allosteric potentiators of metabotropic glutamate receptor 2 (mGluR2): efficacy in an animal model for schizophrenia. Bioorg Med Chem Lett 15(18):4068–4072

    Article  PubMed  CAS  Google Scholar 

  79. Aghajanian GK, Marek GJ (1997) Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology 36(4–5):589–599

    Article  PubMed  CAS  Google Scholar 

  80. Marek GJ et al (2001) A major role for thalamocortical afferents in serotonergic hallucinogen receptor function in the rat neocortex. Neuroscience 105(2):379–392

    Article  PubMed  CAS  Google Scholar 

  81. Marek GJ, Wright RA, Schoepp DD (2006) 5-Hydroxytryptamine2A (5-HT2A) receptor regulation in rat prefrontal cortex: interaction of a phenethylamine hallucinogen and the metabotropic glutamate2/3 receptor agonist LY354740. Neurosci Lett 403(3):256–260

    Article  PubMed  CAS  Google Scholar 

  82. Gonzalez-Maeso J et al (2007) Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 53(3):439–452

    Article  PubMed  CAS  Google Scholar 

  83. Gonzalez-Maeso J et al (2008) Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452(7183):93–97

    Article  PubMed  CAS  Google Scholar 

  84. Molinaro G et al (2009) Activation of mGlu2/3 metabotropic glutamate receptors negatively regulates the stimulation of inositol phospholipid hydrolysis mediated by 5-hydroxytryptamine2A serotonin receptors in the frontal cortex of living mice. Mol Pharmacol 76(2):379–387

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jeffrey Conn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Basel

About this chapter

Cite this chapter

Sheffler, D.J., Conn, P.J. (2010). Activation of Group II Metabotropic Glutamate Receptors (mGluR2 and mGluR3) as a Novel Approach for Treatment of Schizophrenia. In: Skolnick, P. (eds) Glutamate-based Therapies for Psychiatric Disorders. Milestones in Drug Therapy. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0346-0241-9_6

Download citation

Publish with us

Policies and ethics