Skip to main content

Positive Allosteric Modulation of AMPA Receptors: A Novel Potential Antidepressant Therapy

  • Chapter
  • First Online:
Glutamate-based Therapies for Psychiatric Disorders

Part of the book series: Milestones in Drug Therapy ((MDT))

Abstract

This review focuses on positive allosteric modulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors as a novel mechanism to impact mood in the therapy of major depressive disorder (MDD). Several classes of positive allosteric modulators (AMPA receptor potentiators or AMPAkines) have been discovered. Structural and functional studies have demonstrated that different types of positive allosteric modulators have distinct but overlapping binding domains with the extracellular portion of the receptor. Such differences in turn confer unique biophysical mechanisms of allosteric modulation of AMPA receptor function. More recent findings indicate that auxiliary proteins associated with AMPA receptors can further influence the manner in which potentiators ultimately modulate channel function. Support for the hypothesis that AMPA receptor potentiation may be beneficial in MDD comes from both preclinical and clinical findings. Multiple standards of care used to treat MDD have been shown to enhance surface expression of AMPA receptor subunits, increase AMPA subunit phosphorylation, and/or amplify AMPA channel conductance. In addition, AMPA receptor potentiators can enhance brain levels of brain-derived neurotrophic factor, which has been implicated in neuroplasticity and linked to improvements in depression scores after antidepressant treatment. Indeed, neurogenesis has been demonstrated after the application of AMPA receptor potentiators both in vitro and in vivo. Finally, positive allosteric modulators of AMPA receptors are active in a number of rodent models predictive of antidepressant efficacy and where tested, these effects have been prevented by blockade of AMPA receptors. Taken together, biochemical, behavioral, and clinical data suggest that AMPA receptor potentiators may provide a novel therapeutic approach to MDD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AMPA:

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

BDNF:

Brain-derived neurotrophic factor

cAMP:

Adenosine 3′,5′-cyclic monophosphate

CNQX:

6-cyano-7-nitroquinoxaline-2,3-dione

CX516:

Piperidine, 1-(6-quinoxalinylcarbonyl)- (9CI); Ampalex; BDP 12

CX691:

Piperidine, 1-(2,1,3-benzoxadiazol-5-ylcarbonyl)- (9CI), Farampator

DARPP-32:

Dopamine- and cAMP-regulated phosphoprotein of M r 32,000

DNQX:

6,7-dinitroquinoxaline-2,3-dione

GPCR:

G protein-coupled receptor

GYKI:

53655: 7H-1,3-Dioxolo[4,5-h][2,3]benzodiazepine-7-carboxamide, 5-(4-aminophenyl)-8,9-dihydro-N,8-dimethyl-, monohydrochloride (9CI)

LY392098:

N-2-(4-(3-Thienyl)phenyl)propyl 2-propanesulfonamide

LY404187:

N-2-(4-(4-Cyanophenyl)phenyl)propyl 2-propanesulfonamide

LY451646:

N-[2-(4′-cyano[1,1′-biphenyl]-4-yl)propyl]- (9CI)

LY503430:

4′-[(1R)-1-fluoro-1-methyl-2-[[(1-methylethyl)sulfonyl]amino]ethyl]-N-methyl- (9CI)

MGS0039:

2-amino-3-[(3,4-dichlorophenyl)methoxy]-6-fluoro-, (1R,2R,3R,5R,6R)- (9CI)

NMDA:

N-methyl-D-aspartate

References

  1. Dubovsky SL, Buzan R (1999) Mood disorders. In: Hales RE, Yudofsky SC, Talbott JA (eds) Textbook of psychiatry, 3rd edn. American Psychiatric Press, Washington, DC, pp 479–565

    Google Scholar 

  2. Witkin JM, Li X (2009) New approaches to the management of major depressive disorder. In: Enna SJ, Williams M (eds) Contemporary aspects of biomedical research: biomedical issues. advances in pharmacology, vol 57. Academic, New York, pp 347–379

    Chapter  Google Scholar 

  3. Skolnick P, Legutko B, Li X, Bymaster FP (2001) Current perspectives on the development of non-biogenic amine-based antidepressants. Pharmacol Res 43:411–443

    Article  PubMed  CAS  Google Scholar 

  4. Millan MJ (2004) The role of monamines in the actions of established and “novel” antidepressant agents: a critical review. Eur J Pharmacol 500:371–384

    Article  PubMed  CAS  Google Scholar 

  5. Iversen L (2005) The monoamine hypothesis of depression. In: Licinio J, Wong ML (eds) Biology of depression. Wiley-VCH, Weinheim, pp 71–86

    Chapter  Google Scholar 

  6. Alt A, Nisenbaum ES, Bleakman D, Witkin JM (2006) A role for AMPA receptors in mood disorders. Biochem Pharmacol 71:1273–1288

    Article  PubMed  CAS  Google Scholar 

  7. Duman RS (2004) The neurochemistry of depressive disorders: preclinical studies. In: Charney DS, Nestler EJ (eds) Neurobiology of mental illness, 2nd edn. Oxford University Press, Oxford, pp 421–439

    Google Scholar 

  8. Skolnick P, Popik P, Trullas R (2010) N-Methyl-d-aspartate (NMDA) antagonists for the treatment of Depression. In: Skolnick P (ed) Glutamate-based therapies for psychiatric disorders. Springer, Basel

    Chapter  Google Scholar 

  9. Schoepp DD, Skolnick P (2010) Introduction. In: Skolnick P (ed) Glutamate-based therapies for psychiatric disorders. Springer, Basel

    Google Scholar 

  10. Witkin JM (2010) Glutamatergic Modulators for the Treatment of Major Depressive Disorder: Metabotropic Glutamate Receptors. In: Skolnick P (ed) Glutamate-based therapies for psychiatric disorders. Springer, Basel

    Google Scholar 

  11. Bleakman D, Lodge D (1998) Neuropharmacology of AMPA and kainate receptors. Neuropharmacology 37:1187–1204

    Article  PubMed  CAS  Google Scholar 

  12. Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61

    PubMed  CAS  Google Scholar 

  13. Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108

    Article  PubMed  CAS  Google Scholar 

  14. Malenka RC, Nicoll RA (1999) Long-term potentiation – a decade of progress? Science 281:1870–1874

    Article  Google Scholar 

  15. Lauterborn JC, Lynch G, Vanderklish P, Arai A, Gall CM (2000) Positive modulation of AMPA receptors increases neutrophin expression by hippocampal and cortical neurons. J Neurosci 20:8–21

    PubMed  CAS  Google Scholar 

  16. Sommer B, Keinänen K, Verdoorn TA, Wisden W, Burnashev N, Herb A, Köhler M, Takagi T, Sakmann B, Seeburg PH (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249:1580–1585

    Article  PubMed  CAS  Google Scholar 

  17. Quirk JC, Siuda ER, Nisenbaum ES (2004) Molecular determinants responsible for differences in desensitization kinetics of AMPA receptor splice variants. J Neurosci 24:11416–11420

    Article  PubMed  CAS  Google Scholar 

  18. Armstrong N, Sun Y, Chen GQ, Gouaux E (1998) Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 395:913–917

    Article  PubMed  CAS  Google Scholar 

  19. Armstrong N, Gouaux E (2000) Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron 28:165–181

    Article  PubMed  CAS  Google Scholar 

  20. Sun Y, Olson R, Horning M, Armstrong N, Mayer M, Gouaux E (2002) Mechanism of glutamate receptor desensitization. Nature 417:245–253

    Article  PubMed  CAS  Google Scholar 

  21. Esteban JA (2003) AMPA receptor trafficking: a road map for synaptic plasticity. Mol Interv 3:375–385

    Article  PubMed  CAS  Google Scholar 

  22. Bredt DS, Nicoll RA (2003) AMPA receptor trafficking at excitatory synapses. Neuron 40:361–379

    Article  PubMed  CAS  Google Scholar 

  23. Kato AS, Siuda ER, Nisenbaum ES, Bredt DS (2008) AMPA receptor subunit-specific regulation by a distinct family of type II TARPs. Neuron 59:986–996

    Article  PubMed  CAS  Google Scholar 

  24. Tomita S, Chen L, Kawasaki Y, Petralia RS, Wenthold RJ, Nicoll RA, Bredt DS (2003) Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins. J Cell Biol 161:805–816

    Article  PubMed  CAS  Google Scholar 

  25. Milstein A, Zhou W, Karimzadegan S, Bredt D, Nicoll R (2007) TARP subtypes differentially and dose-dependently control synaptic AMPA receptor gating. Neuron 55:905–918

    Article  PubMed  CAS  Google Scholar 

  26. Martinez-Turrillas R, Frechilla D, Del Rio J (2002) Chronic antidepressant treatment increases the membrane expression of AMPA receptors in rat hippocampus. Neuropharmacology 43:1230–1237

    Article  PubMed  CAS  Google Scholar 

  27. Martínez-Turrillas R, Del Río J, Frechilla D (2005) Sequential changes in BDNF mRNA expression and synaptic levels of AMPA receptor subunits in rat hippocampus after chronic antidepressant treatment. Neuropharmacology 49:1178–1188

    Article  PubMed  Google Scholar 

  28. Ito I, Tanabe S, Kohda A, Sugiyama H (1990) Allosteric potentiation of quisqualate receptors by a nootropic drug aniracetam. J Physiol 424:533–543

    PubMed  CAS  Google Scholar 

  29. Partin KM, Fleck MW, Mayer ML (1996) AMPA receptor flip/flop mutants affecting deactivation, desensitization, and modulation by cyclothiazide, aniracetam, and thiocyanate. J Neurosci 16:6634–6647

    PubMed  CAS  Google Scholar 

  30. Miu P, Jarvie KR, Radhakrishnan V, Gates MR, Ogden A, Ornstein PL (2001) Novel AMPA receptor potentiators LY392098 and LY404187: effects on recombinant human AMPA receptors in vitro. Neuropharmacology 40:976–983

    Article  PubMed  CAS  Google Scholar 

  31. Quirk JC, Nisenbaum ES (2002) LY404187: a novel positive allosteric modulator of AMPA receptors. CNS Drug Rev 8:255–282

    Article  PubMed  CAS  Google Scholar 

  32. Partin KM, Patneau DK, Mayer ML (1994) Cyclothiazide differentially modulates desensitization of AMPA receptor splice variants. Mol Pharmacol 46:129–138

    PubMed  CAS  Google Scholar 

  33. Arai A, Lynch G (1998) AMPA receptor desensitization modulates synaptic responses induced by repetitive afferent stimulation in hippocampal slices. Brain Res 799:235–242

    Article  PubMed  CAS  Google Scholar 

  34. Arai A, Lynch G (1998) The waveform of synaptic transmission at hippocampal synapses is not determined by AMPA receptor desensitization. Brain Res 799:230–234

    Article  PubMed  CAS  Google Scholar 

  35. O'Neill MJ, Murray TK, Clay MP, Lindstrom T, Yang CR, Nisenbaum ES (2005) LY503430: pharmacology, pharmacokinetics, and effects in rodent models of Parkinson's disease. CNS Drug Rev 11:77–96

    Article  PubMed  Google Scholar 

  36. Sekiguchi M, Fleck MW, Mayer ML, Takeo J, Chiba Y, Yamashita S et al (1997) A novel allosteric potentiator of AMPA receptors: 4-[2-(phenylsulfonylamino)ethylthio]-2, 6-difluoro-phenoxyacetamide. J Neurosci 17:5760–5771

    PubMed  CAS  Google Scholar 

  37. Tomita S, Sekiguchi M, Wada K, Nicoll RA, Bredt DS (2006) Stargazin controls the pharmacology of AMPA receptor potentiators. Proc Natl Acad Sci USA 103:10064–10067

    Article  PubMed  CAS  Google Scholar 

  38. Montgomery KE, Kessler M, Arai AC (2009) Modulation of agonist binding to AMPA receptors by 1-(1, 4-benzodioxan-6-ylcarbonyl)piperidine (CX546): differential effects across brain regions and GluA1–4/transmembrane AMPA receptor regulatory protein combinations. J Pharmacol Exp Ther 331:965–974

    Article  PubMed  CAS  Google Scholar 

  39. Castrén E, Rantamäki T (2010) Role of brain-derived neurotrophic factor in the aetiology of depression: implications for pharmacological treatment. CNS Drugs 24:1–7

    Article  PubMed  Google Scholar 

  40. Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4:299–309

    Article  PubMed  CAS  Google Scholar 

  41. Schlessinger J, Ullrich A (1992) Growth factor signaling by receptor tyrosine kinases. Neuron 9:383–391

    Article  PubMed  CAS  Google Scholar 

  42. Allendoerfer KL, Cabelli RJ, Escandon E, Kaplan DR, Nikolics K, Shatz CJ (1994) Regulation of neurotrophin receptors during the maturation of the mammalian visual system. J Neurosci 14:1795–1811

    PubMed  CAS  Google Scholar 

  43. Middlemas DS, Lindberg RA, Hunter T (1991) trkB, a neural receptor protein-tyrosine kinase: evidence for a full-length and two truncated receptors. Mol Cell Biol 11:143–153

    PubMed  CAS  Google Scholar 

  44. Wang JW, Dranovsky A, Hen R (2008) The when and where of BDNF and the antidepressant response. Biol Psychiatry 63:640–641

    Article  PubMed  Google Scholar 

  45. Frim DM, Uhler TA, Galpern WR, Beal MF, Breakefield XO, Isacson O (1994) Implanted fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevent 1-methyl-4-phenylpyridinium toxicity to dopaminergic neurons in the rat. Proc Natl Acad Sci USA 91:5104–5108

    Article  PubMed  CAS  Google Scholar 

  46. Mamounas LA, Blue ME, Siuciack JA, Altar CA (1995) Brain-derived neurotrophic factor promotes the survival and sprouting of serotonergic axons in rat brain. J Neurosci 15: 7929–7939

    PubMed  CAS  Google Scholar 

  47. Mamounas LA, Altar CA, Blue ME, Kaplan DR, Tessarollo L, Lyons WE (2000) BDNF promotes the regenerative sprouting, but not survival, of injured serotonergic axons in the adult rat brain. J Neurosci 20:771–782

    PubMed  CAS  Google Scholar 

  48. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809

    Article  PubMed  CAS  Google Scholar 

  49. Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C et al (2003) Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry 54:70–75

    Article  PubMed  CAS  Google Scholar 

  50. Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15:7539–7547

    PubMed  CAS  Google Scholar 

  51. Nibuya M, Nestler EJ, Duman RS (1996) Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci 16:2365–2372

    PubMed  CAS  Google Scholar 

  52. Fujimaki K, Morinobu S, Duman RS (2000) Administration of a cAMP phosphodiesterase 4 inhibitor enhances antidepressant-induction of BDNF mRNA in rat hippocampus. Neuropsychopharmacology 22:42–51

    Article  PubMed  CAS  Google Scholar 

  53. Neeper SA, Gόmez-Pinilla F, Choi J, Cotman CW (1995) Exercise and brain neurotrophins. Nature 373:109

    Article  PubMed  CAS  Google Scholar 

  54. Neeper SA, Gόmez-Pinilla F, Choi J, Cotman CW (1996) Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res 726:49–56

    Article  PubMed  CAS  Google Scholar 

  55. Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 22:3251–3261

    PubMed  CAS  Google Scholar 

  56. Saarelainen T, Hendolin P, Lucas G, Koponen E, Sairanen M, MacDonald E et al (2003) Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci 23:349–357

    PubMed  CAS  Google Scholar 

  57. Legutko B, Li X, Skolnick P (2001) Regulation of BDNF expression in primary neuron culture by LY392098, a novel AMPA receptor potentiator. Neuropharmacology 40:1019–1027

    Article  PubMed  CAS  Google Scholar 

  58. Mackowiak M, O’Neill M, Hicks C, Bleakman D, Skolnick P (2002) An AMPA receptor potentiator modulates hippocampal expression of BDNF: An in vivo study. Neuropharmacology 43:1–10

    Article  PubMed  CAS  Google Scholar 

  59. Bai F, Bergeron M, Nelson DL (2003) Chronic AMPA receptor potentiator (LY451646) treatment increases cell proliferation in adult rat hippocampus. Neuropharmacology 44:1013–1021

    Article  PubMed  CAS  Google Scholar 

  60. Su XW, Li XY, Banasr M, Koo JW, Shahid M, Henry B, Duman RS (2009) Chronic treatment with AMPA receptor potentiator Org 26576 increases neuronal cell proliferation and survival in adult rodent hippocampus. Psychopharmacol (Berl) 206:215–222

    Article  CAS  Google Scholar 

  61. Li X, Witkin JM, Need AB, Skolnick P (2003) Enhancement of antidepressant potency by a potentiator of AMPA receptors. Cell Mol Neurobiol 23:419–430

    Article  PubMed  CAS  Google Scholar 

  62. Li X, Tizzano JP, Griffey K, Clay M, Lindstrom T, Skolnick P (2001) Antidepressant-like actions of an AMPA receptor potentiator (LY392098). Neuropharmacology 40:1028–1033

    Article  PubMed  CAS  Google Scholar 

  63. Farley S, Apazoglou K, Witkin JM, Giros B, Tzavara ET (2010) Antidepressant-like effects of an AMPA receptor potentiator under a chronic mild stress paradigm. Int J Neuropsychopharmacol 11:1–12

    Google Scholar 

  64. Bai F, Li X, Clay M, Lindstrom T, Skolnick P (2001) Intra- and interstrain differences in models of "behavioral despair". Pharmacol Biochem Behav 70:187–192

    Article  PubMed  CAS  Google Scholar 

  65. Knapp RJ, Goldenberg R, Shock C, Cecil A, Watkins J, Miller C et al (2002) Antidepressant activity of memory-enhancing drugs in the reduction of submissive behavior model. Eur J Pharmacol 440:27–35

    Article  PubMed  CAS  Google Scholar 

  66. Szewczyk B, Poleszak E, Sowa-Kućma M, Wróbel A, Słotwiński S, Listos J, Wlaź P, Cichy A, Siwek A, Dybała M, Gołembiowska K, Pilc A, Nowak G (2009) The involvement of NMDA and AMPA receptors in the mechanism of antidepressant-like action of zinc in the forced swim test. Amino Acids [Epub ahead of print]

    Google Scholar 

  67. Duman RS, Heninger GR, Nestler EJ (1997) A molecular and cellular theory of depression. Arch Gen Psychiatry 54:597–606

    Article  PubMed  CAS  Google Scholar 

  68. Conti AC, Cryan JF, Dalvi A, Lucki I, Blendy JA (2002) cAMP response element-binding protein is essential for the upregulation of brain-derived neurotrophic factor transcription, but not the behavioral or endocrine responses to antidepressant drugs. J Neurosci 22:3262–3268

    PubMed  CAS  Google Scholar 

  69. Miró X, Pérez-Torres S, Artigas F, Puigdomènech P, Palacios JM, Mengod G (2002) Regulation of cAMP phosphodiesterase mRNAs expression in rat brain by acute and chronic fluoxetine treatment. An in situ hybridization study. Neuropharmacology 43:1148–1157

    Article  PubMed  Google Scholar 

  70. Hayashi T, Umemori H, Mishina M, Yamamoto T (1999) The AMPA receptor interacts with and signals through the protein tyrosine kinase Lyn. Nature 397:72–76

    Article  PubMed  CAS  Google Scholar 

  71. Freed WJ, Dillon-Carter O, Kleinman JE (1993) Properties of [3H]AMPA binding in postmortem human brain from psychotic subjects and controls: increases in caudate nucleus associated with suicide. Exp Neurol 121:48–56

    Article  PubMed  CAS  Google Scholar 

  72. Noga JT, Hyde TM, Herman MM, Spurney CF, Bigelow LB, Weinberger DR et al (1997) Glutamate receptors in the postmortem striatum of schizophrenic, suicide, and control brains. Synapse 27:168–176

    Article  PubMed  CAS  Google Scholar 

  73. de Kloet ER, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475

    Article  PubMed  Google Scholar 

  74. Shors TJ, Thompson RF (1992) Acute stress impairs (or induces) synaptic long-term potentiation (LTP) but does not affect paired-pulse facilitation in the stratum radiatum of rat hippocampus. Synapse 11:262–265

    Article  PubMed  CAS  Google Scholar 

  75. Tocco G, Shors TJ, Baudry M, Thompson RF (1991) Selective increase of AMPA binding to the AMPA/quisqualate receptor in the hippocampus in response to acute stress. Brain Res 559:168–171

    Article  PubMed  CAS  Google Scholar 

  76. Karst H, Joels M (2003) Effect of chronic stress on synaptic currents in rat hippocampal dentate gyrus neurons. J Neurophysiol 89:625–633

    Article  PubMed  Google Scholar 

  77. Krugers HJ, Koolhaas JM, Bohus B, Korf J (1993) A single social stress-experience alters glutamate receptor-binding in rat hippocampal CA3 area. Neurosci Lett 154:73–77

    Article  PubMed  CAS  Google Scholar 

  78. Bartanusz V, Aubry JM, Pagliusi S, Jezova D, Baffi J, Kiss JZ (1995) Stress-induced changes in messenger RNA levels of N-methyl-D-aspartate and AMPA receptor subunits in selected regions of the rat hippocampus and hypothalamus. Neuroscience 66:247–252

    Article  PubMed  CAS  Google Scholar 

  79. Schwendt M, Jezova D (2000) Gene expression of two glutamate receptor subunits in response to repeated stress exposure in rat hippocampus. Cell Mol Neurobiol 20:319–329

    Article  PubMed  CAS  Google Scholar 

  80. Rosa ML, Guimaraes FS, Pearson RC, Del Bel EA (2002) Effects of single or repeated restraint stress on GluR1 and GluR2 flip and flop mRNA expression in the hippocampal formation. Brain Res Bull 59:117–124

    Article  PubMed  CAS  Google Scholar 

  81. Suenaga T, Morinobu S, Kawano K, Sawada T, Yamawaki S (2004) Influence of immobilization stress on the levels of CaMKII and phospho-CaMKII in the rat hippocampus. Int J Neuropsychopharmacol 7:299–309

    Article  PubMed  CAS  Google Scholar 

  82. Du J, Gray NA, Falke CA, Chen W, Yuan P, Szabo ST et al (2004) Modulation of synaptic plasticity by antimanic agents: the role of AMPA glutamate receptor subunit 1 synaptic expression. J Neurosci 24:6578–6589

    Article  PubMed  CAS  Google Scholar 

  83. Naylor P, Stewart CA, Wright SR, Pearson RC, Reid IC (1996) Repeated ECS induces GluR1 mRNA but not NMDAR1A-G mRNA in the rat hippocampus. Brain Res Mol Brain Res 35:349–353

    Article  PubMed  CAS  Google Scholar 

  84. Svenningsson P, Tzavara ET, Witkin JM, Fienberg AA, Nomikos GG, Greengard P (2002) Involvement of striatal and extrastriatal DARPP-32 in biochemical and behavioral effects of fluoxetine (Prozac). Proc Nat Acad Sci USA 99:3182–3187

    Article  PubMed  CAS  Google Scholar 

  85. Svenningsson P, Bateup H, Qi H, Takamiya K, Huganir RL, Spedding M, Roth BL, McEwen BS, Greengard P (2007) Involvement of AMPA receptor phosphorylation in antidepressant actions with special reference to tianeptine. Eur J Neurosci 26:3509–3517

    Article  PubMed  Google Scholar 

  86. Du J, Suzuki K, Wei Y, Wang Y, Blumenthal R, Chen Z, Falke C, Zarate CA Jr, Manji HK (2007) The anticonvulsants lamotrigine, riluzole, and valproate differentially regulate AMPA receptor membrane localization: relationship to clinical effects in mood disorders. Neuropsychopharmacology 32:793–802

    Article  PubMed  CAS  Google Scholar 

  87. Roche KW, O'Brien RJ, Mammen AL, Bernhardt J, Huganir RL (1996) Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron 16:1179–1188

    Article  PubMed  CAS  Google Scholar 

  88. Barria A, Muller D, Derkach V, Griffith LC, Soderling TR (1997) Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276:2042–2045

    Article  PubMed  CAS  Google Scholar 

  89. Lee HK, Barbarosie M, Kameyama K, Bear MF, Huganir RL (2000) Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405:955–959

    Article  PubMed  CAS  Google Scholar 

  90. Du J, Gray NA, Falke C, Yuan P, Szabo S, Manji HK (2003) Structurally dissimilar antimanic agents modulate synaptic plasticity by regulating AMPA glutamate receptor subunit GluR1 synaptic expression. Ann N Y Acad Sci 1003:378–380

    Article  PubMed  CAS  Google Scholar 

  91. Brennan BP, Hudson JI, Jensen JE, McCarthy J, Roberts JL, Prescot AP, Cohen BM, Pope HG Jr, Renshaw PF, Ongür D (2010) Rapid enhancement of glutamatergic neurotransmission in bipolar depression following treatment with riluzole. Neuropsychopharmacology 35:834–846

    Article  PubMed  CAS  Google Scholar 

  92. Zarate CA Jr, Manji HK (2008) The role of AMPA receptor modulation in the treatment of neuropsychiatric diseases. Exp Neurol 211:7–10

    Article  PubMed  CAS  Google Scholar 

  93. Karasawa J, Shimazaki T, Kawashima N, Chaki S (2005) AMPA receptor stimulation mediates the antidepressant-like effect of a group II metabotropic glutamate receptor antagonist. Brain Res 1042:92–98

    Article  PubMed  CAS  Google Scholar 

  94. Maeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, Manji HK (2008) Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 63:349–352

    Article  PubMed  CAS  Google Scholar 

  95. Dybała M, Siwek A, Poleszak E, Pilc A, Nowak G (2008) Lack of NMDA-AMPA interaction in antidepressant-like effect of CGP 37849, an antagonist of NMDA receptor, in the forced swim test. J Neural Transm 115:1519–1520

    Article  PubMed  Google Scholar 

  96. Gould TD, O'Donnell KC, Dow ER, Du J, Chen G, Manji HK (2007) Involvement of AMPA receptors in the antidepressant-like effects of lithium in the mouse tail suspension test and forced swim test. Neuropharmacology 54:577–587

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are also grateful to our many colleagues for discussion in particular to Drs. Phil Skolnick, Darryle Schoepp, James Monn, Paul Ornstein, Eleni Tzavara, David Bleakman, and David Bredt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric S. Nisenbaum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Basel

About this chapter

Cite this chapter

Nisenbaum, E.S., Witkin, J.M. (2010). Positive Allosteric Modulation of AMPA Receptors: A Novel Potential Antidepressant Therapy. In: Skolnick, P. (eds) Glutamate-based Therapies for Psychiatric Disorders. Milestones in Drug Therapy. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0346-0241-9_3

Download citation

Publish with us

Policies and ethics