Skip to main content

A10 Cancer immunity

  • Chapter
  • First Online:
Principles of Immunopharmacology

Abstract

Almost 100 years ago, Ehrlich and coworkers observed the presence of infiltrates of mononuclear cells around or inside tumor lesions [1]. This finding led them to propose that tumors could be recognized and inhibited by the ‘magic bullets’ of the immune system. At the end of the 19th century, studies were initiated that aimed at actively immunizing cancer patients against their own cancerous tissue. During the subsequent decades, cancer patients were nonspecifically immune-stimulated with relatively crude leukocyte extracts such as transfer factor, immune- RNA, bacterial extracts such as bacillus Calmette- Guerain, Coley’s toxin or levamisole. These studies were initiated in spite of the fact that little was known about the various components of the immune system that could react against cancer, and even less was known about the structures on cancer cells that can be recognized by the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ehrlich P (1909) Ueber den jetzigen Stand der Karzinomforschung. Ned Tijdschrift Geneesk 53: 273–290

    Google Scholar 

  2. Thomas L (1959) Discussion. In HS Lawrence (ed): Cellular and Humoral Aspects of the Hypersensitive States. Hoeber-Harper, New York

    Google Scholar 

  3. Burnet FM (1970) The concept of immunological surveillance. Prog Exp Tumor Res 13: 1–27

    PubMed  CAS  Google Scholar 

  4. Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM (2007) Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 370: 59–67

    Article  PubMed  Google Scholar 

  5. Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, Mellman I, Prindiville SA, Viner JL, Weiner LM, Matrisian LM (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15: 5323–5337

    Article  PubMed  Google Scholar 

  6. Kokhaei P, Rezvany MR, Virving L, Choudhury A, Rabbani H, Osterborg A, Mellstedt H (2003) Dendritic cells loaded with apoptotic tumor cells induce a stronger T-cell response than dendritic cell-tumor hybrids in B-CLL. Leukemia 17: 894–899

    Article  PubMed  CAS  Google Scholar 

  7. Su Z, Dannull J, Heiser A, Yancey D, Pruitt S, Madden J, Coleman D, Niedzwiecki D, Gilboa E, Vieweg J (2003) Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNAtransfected dendritic cells. Cancer Res 63: 2127–2133

    PubMed  CAS  Google Scholar 

  8. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM et al (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298: 850–854

    Article  PubMed  CAS  Google Scholar 

  9. Freedman RS, Kudelka AP, Kavanagh JJ, Verschraegen C, Edwards CL, Nash M, Levy L, Atkinson EN, Zhang HZ, Melichar B et al (2000) Clinical and biological effects of intraperitoneal injections of recombinant interferon-gamma and recombinant interleukin 2 with or without tumor-infiltrating lymphocytes in patients with ovarian or peritoneal carcinoma. Clin Cancer Res 6: 2268–2278

    PubMed  CAS  Google Scholar 

  10. Figlin RA, Thompson JA, Bukowski RM, Vogelzang NJ, Novick AC, Lange P, Steinberg GD, Belldegrun AS (1999) Multicenter, randomized, phase III trial of CD8(+) tumor-infiltrating lymphocytes in combination with recombinant interleukin-2 in metastatic renal cell carcinoma. J Clin Oncol 17: 2521–2529

    PubMed  CAS  Google Scholar 

  11. Rosenberg SA, Yannelli JR, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, Parkinson DR, Seipp CA, Einhorn JH, White DE (1994) Treatment of patients with metastatic melanoma with autologous tumorinfiltrating lymphocytes and interleukin 2 J Natl Cancer Inst 86: 1159–1166

    Google Scholar 

  12. Vieweg J, Su Z, Dahm P, Kusmartsev S (2007) Reversal of tumor-mediated immunosuppression. Clin Cancer Res 13: 727s-732s

    Article  PubMed  CAS  Google Scholar 

  13. Adler AJ (2007) Mechanisms of T cell tolerance and suppression in cancer mediated by tumor-associated antigens and hormones. Curr Cancer Drug Targets 7: 3–14

    Article  PubMed  CAS  Google Scholar 

  14. Ringden O, Karlsson H, Olsson R, Omazic B, Uhlin M (2009) The allogeneic graft-versus-cancer effect. Br J Haematol 147: 614–633

    Article  PubMed  Google Scholar 

  15. Hawkins RE, Gilham DE, Debets R, Eshhar Z, Taylor N, Abken H, Schumacher TN, Consortium A (2010) Development of adoptive cell therapy for cancer: a clinical perspective. Hum Gene Ther 21: 665–672

    Article  CAS  Google Scholar 

  16. Pieters J (2000) MHC class II-restricted antigen processing and presentation. Adv Immunol 75: 159–208

    Article  PubMed  CAS  Google Scholar 

  17. Zhu J, Paul WE (2008) CD4 T cells: fates, functions, and faults. Blood 112: 1557–1569

    Article  PubMed  CAS  Google Scholar 

  18. Mosmann TR, Coffman RL (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7: 145–173

    Article  PubMed  CAS  Google Scholar 

  19. Paul WE, Seder RA (1994) Lymphocyte responses and cytokines. Cell 76: 241–251

    Article  PubMed  CAS  Google Scholar 

  20. Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM (2006) Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 24: 677–688

    Article  PubMed  CAS  Google Scholar 

  21. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4: 330–336

    Article  PubMed  CAS  Google Scholar 

  22. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299: 1057–1061

    Article  PubMed  CAS  Google Scholar 

  23. Gavin M, Rudensky A (2003) Control of immune homeostasis by naturally arising regulatory CD4+ T cells. Curr Opin Immunol 15: 690–696

    Article  PubMed  CAS  Google Scholar 

  24. Falk K, Rotzschke O, Stevanovic S, Jung G, Rammensee HG (1991) Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351: 290–296

    Article  PubMed  CAS  Google Scholar 

  25. Hunziker L, Klenerman P, Zinkernagel RM, Ehl S (2002) Exhaustion of cytotoxic T cells during adoptive immunotherapy of virus carrier mice can be prevented by

    Google Scholar 

  26. B cells or CD4+ T cells. Eur J Immunol 32: 374–382

    Google Scholar 

  27. Marzo AL, Kinnear BF, Lake RA, Frelinger JJ, Collins EJ, Robinson BW, Scott B (2000) Tumor-specific CD4+ T cells have a major “post-licensing” role in CTL mediated anti-tumor immunity. J Immunol 165: 6047–6055

    PubMed  CAS  Google Scholar 

  28. Schoenberger SP, Toes RE, van der Voort EI, Offringa R

    Google Scholar 

  29. Melief CJ (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 393: 480–483

    Article  PubMed  CAS  Google Scholar 

  30. Surman DR, Dudley ME, Overwijk WW, Restifo NP (2000) Cutting edge: CD4+ T cell control of CD8+ T cell reactivity to a model tumor antigen. J Immunol 164: 562–565

    PubMed  CAS  Google Scholar 

  31. Bevan MJ (2004) Helping the CD8(+) T-cell response. Nat Rev Immunol 4: 595–602

    Article  PubMed  CAS  Google Scholar 

  32. Ibe S, Qin Z, Schuler T, Preiss S, Blankenstein T (2001 ) Tumor rejection by disturbing tumor stroma cell interactions. J Exp Med 194: 1549–1559

    Article  PubMed  CAS  Google Scholar 

  33. Zinkernagel RM, Doherty PC (1997) The discovery of MHC restriction. Immunol Today 18: 14–17

    Article  PubMed  CAS  Google Scholar 

  34. Carrel S, Johnson JP (1993) Immunologic recognition of malignant melanoma by autologous T lymphocytes. Curr Opin Oncol 5: 383–389

    Article  PubMed  CAS  Google Scholar 

  35. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A, Boon T (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254: 1643–1647

    Article  PubMed  Google Scholar 

  36. Traversari C, van der Bruggen P, Luescher IF, Lurquin C, Chomez P, Van Pel A, De Plaen E, Amar-Costesec A, Boon T (1992) A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J Exp Med 176: 1453–1457

    Article  PubMed  CAS  Google Scholar 

  37. Wooldridge L, Lissina A, Cole DK, van den Berg HA, Price DA, Sewell AK (2009) Tricks with tetramers: how to get the most from multimeric peptide-MHC. Immunology 126: 147–164

    Article  PubMed  CAS  Google Scholar 

  38. Carter P (2001) Improving the efficacy of antibodybased cancer therapies. Nat Rev Cancer 1: 118–129

    Article  PubMed  CAS  Google Scholar 

  39. Reuschenbach M, von Knebel Doeberitz M, Wentzensen N (2009) A systematic review of humoral immune responses against tumor antigens. Cancer Immunol Immunother 58: 1535–1544

    Article  PubMed  CAS  Google Scholar 

  40. Sahin U, Tureci O, Schmitt H, Cochlovius B, Johannes T, Schmits R, Stenner F, Luo G, Schobert I, Pfreundschuh M (1995) Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci USA 92: 11810–11813

    Article  PubMed  CAS  Google Scholar 

  41. Chen YT, Scanlan MJ, Sahin U, Tureci O, Gure AO, Tsang S, Williamson B, Stockert E, Pfreundschuh M, Old LJ (1997) A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci USA 94: 1914–1918

    Article  PubMed  CAS  Google Scholar 

  42. Jager E, Jager D, Karbach J, Chen YT, Ritter G, Nagata Y, Gnjatic S, Stockert E, Arand M, Old LJ, Knuth A (2000) Identification of NY-ESO-1 epitopes presented by human histocompatibility antigen (HLA)- DRB4*0101-0103 and recognized by CD4(+) T lymphocytes of patients with NY-ESO-1-expressing melanoma. J Exp Med 191: 625–630

    Article  PubMed  CAS  Google Scholar 

  43. Wang RF, Johnston SL, Zeng G, Topalian SL, Schwartzentruber DJ, Rosenberg SA (1998) A breast and melanoma- shared tumor antigen: T cell responses to anti- genic peptides translated from different open reading frames. J Immunol 161: 3598–3606

    PubMed  CAS  Google Scholar 

  44. Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berendsvan der Meer DM, Vloon AP, Essahsah F, Fathers LM, Offringa R, Drijfhout JW et al (2009) Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med 361: 1838–1847

    Article  PubMed  CAS  Google Scholar 

  45. Dermime S, Bertazzoli C, Marchesi E, Ravagnani F, Blaser K, Corneo GM, Pogliani E, Parmiani G, Gambacorti- Passerini C (1996) Lack of T-cell-mediated recognition of the fusion region of the pml/RAR-alpha hybrid protein by lymphocytes of acute promyelocytic leukemia patients. Clin Cancer Res 2: 593–600

    PubMed  CAS  Google Scholar 

  46. Zippelius A, Batard P, Rubio-Godoy V, Bioley G, Lienard D, Lejeune F, Rimoldi D, Guillaume P, Meidenbauer N, Mackensen A et al (2004) Effector function of human tumor-specific CD8 T cells in melanoma lesions: a state of local functional tolerance. Cancer Res 64: 2865–2873

    Article  PubMed  CAS  Google Scholar 

  47. Hambach L, Spierings E, Goulmy E (2007) Risk assessment in haematopoietic stem cell transplantation:

    Google Scholar 

  48. minor histocompatibility antigens. Best Pract Res Clin Haematol 20: 171–187

    Google Scholar 

  49. Dierselhuis M, Goulmy E (2009) The relevance of minor histocompatibility antigens in solid organ transplantation. Curr Opin Organ Transplant 14: 419–425

    Article  PubMed  Google Scholar 

  50. Mutis T, Gillespie G, Schrama E, Falkenburg JH, Moss P, Goulmy E (1999) Tetrameric HLA class I-minor histocompatibility antigen peptide complexes demonstrate minor histocompatibility antigen-specific cytotoxic T lymphocytes in patients with graft-versus-host disease. Nat Med 5: 839–842

    Article  PubMed  CAS  Google Scholar 

  51. Spierings E, Wieles B, Goulmy E (2004) Minor histocompatibility antigens--big in tumor therapy. Trends Immunol 25: 56–60

    Article  PubMed  CAS  Google Scholar 

  52. Spierings E, Drabbels J, Hendriks M, Pool J, Spruyt-Gerritse M, Claas F, Goulmy E (2006) A uniform genomic minor histocompatibility antigen typing methodology and database designed to facilitate clinical applications. PLoS One 1: e42

    Article  PubMed  CAS  Google Scholar 

  53. Grever M, Kopecky K, Foucar MK, Head D, Bennett JM, Hutchison RE, Corbett WE, Cassileth PA, Habermann T, Golomb H et al (1995) Randomized comparison of pentostatin versus interferon alfa-2a in previously untreated patients with hairy cell leukemia: an intergroup study. J Clin Oncol 13: 974–982

    PubMed  CAS  Google Scholar 

  54. Krown SE (2001) Management of Kaposi sarcoma: the role of interferon and thalidomide. Curr Opin Oncol 13: 374–381

    Article  PubMed  CAS  Google Scholar 

  55. Gore ME, Griffin CL, Hancock B, Patel PM, Pyle L, Aitchison M, James N, Oliver RT, Mardiak J, Hussain T et al (2010) Interferon alfa-2a versus combination therapy with interferon alfa-2a, interleukin-2, and fluorouracil in patients with untreated metastatic renal cell carcinoma (MRC RE04/EORTC GU 30012): an open-label randomised trial. Lancet 375: 641–648

    Article  PubMed  CAS  Google Scholar 

  56. Eggermont AM, Suciu S, Santinami M, Testori A, Kruit WH, Marsden J, Punt CJ, Sales F, Gore M, Mackie R et al (2008) Adjuvant therapy with pegylated interferon alfa-2b versus observation alone in resected stage III melanoma: final results of EORTC 18991, a randomised phase III trial. Lancet 372: 117–126

    Article  PubMed  CAS  Google Scholar 

  57. Rosenberg SA, Yang JC, White DE, Steinberg SM (1998) Durability of complete responses in patients with metastatic cancer treated with high-dose interleukin-2: identification of the antigens mediating response. Ann Surg 228: 307–319

    Article  PubMed  CAS  Google Scholar 

  58. 55 Tourani JM, Lucas V, Mayeur D, Dufour B, DiPalma M, Boaziz C, Grise P, Varette C, Pavlovitch JM, Pujade- Lauraine E et al (1996) Subcutaneous recombinant interleukin-2 (rIL-2) in out-patients with metastatic renal cell carcinoma. Results of a multicenter SCAPP1 trial. Ann Oncol 7: 525–528

    PubMed  CAS  Google Scholar 

  59. Ravaud A, Audhuy B, Gomez F, Escudier B, Lesimple T, Chevreau C, Douillard JY, Caty A, Geoffrois L, Ferrero JM et al (1998) Subcutaneous interleukin-2, interferon alfa-2a, and continuous infusion of fluorouracil in metastatic renal cell carcinoma: a multicenter phase II trial. Groupe Francais d’Immunotherapie. J Clin Oncol 16: 2728–2732

    CAS  Google Scholar 

  60. Dutcher JP, Atkins M, Fisher R, Weiss G, Margolin K, Aronson F, Sosman J, Lotze M, Gordon M, Logan T, Mier J (1997) Interleukin-2-based therapy for metastatic renal cell cancer: the Cytokine Working Group experience, 1989–1997. Cancer J Sci Am 3 (Suppl 1): S73–78

    PubMed  Google Scholar 

  61. Lopez Hanninen E, Kirchner H, Atzpodien J (1996) Interleukin-2 based home therapy of metastatic renal cell carcinoma: risks and benefits in 215 consecutive single institution patients. J Urol 155: 19–25

    Article  PubMed  CAS  Google Scholar 

  62. Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 72: 3666–3670

    Article  PubMed  CAS  Google Scholar 

  63. Asher A, Mule JJ, Reichert CM, Shiloni E, Rosenberg SA (1987) Studies on the anti-tumor efficacy of systemically administered recombinant tumor necrosis factor against several murine tumors in vivo. J Immunol 138: 963–974

    PubMed  CAS  Google Scholar 

  64. Eggermont AM, de Wilt JH, ten Hagen TL (2003) Current uses of isolated limb perfusion in the clinic and a model system for new strategies. Lancet Oncol 4: 429–437

    Article  PubMed  Google Scholar 

  65. de Wilt JH, ten Hagen TL, de Boeck G, van Tiel ST, de Bruijn EA, Eggermont AM (2000) Tumor necrosis factor alpha increases melphalan concentration in tumor tissue after isolated limb perfusion. Br J Cancer 82: 1000–1003

    Article  PubMed  Google Scholar 

  66. Baxevanis CN, Perez SA, Papamichail M (2009) Cancer immunotherapy. Crit Rev Clin Lab Sci 46: 167–189

    Article  PubMed  CAS  Google Scholar 

  67. Rosenberg SA, Sportes C, Ahmadzadeh M, Fry TJ, Ngo LT, Schwarz SL, Stetler-Stevenson M, Morton KE, Mavroukakis SA, Morre M et al (2006) IL-7 administration to humans leads to expansion of CD8+ and CD4+ cells but a relative decrease of CD4+ T-regulatory cells. J Immunother 29: 313–319

    Article  PubMed  CAS  Google Scholar 

  68. Sportes C, Hakim FT, Memon SA, Zhang H, Chua KS, Brown MR, Fleisher TA, Krumlauf MC, Babb RR, Chow CK et al (2008) Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J Exp Med 205: 1701–1714

    Article  PubMed  CAS  Google Scholar 

  69. Yadav D, Sarvetnick N (2003) Cytokines and autoimmunity: redundancy defines their complex nature. Curr Opin Immunol 15: 697–703

    Article  PubMed  CAS  Google Scholar 

  70. Burton JD, Bamford RN, Peters C, Grant AJ, Kurys G, Goldman CK, Brennan J, Roessler E, Waldmann TA (1994) A lymphokine, provisionally designated interleukin T and produced by a human adult T-cell leukemia line, stimulates T-cell proliferation and the induction of lymphokine-activated killer cells. Proc Natl Acad Sci USA 91: 4935–4939

    Article  PubMed  CAS  Google Scholar 

  71. Leonard WJ, Zeng R, Spolski R (2008) Interleukin 21: a cytokine/cytokine receptor system that has come of age. J Leukoc Biol 84: 348–356

    Article  PubMed  CAS  Google Scholar 

  72. Kohler G, Milstein C (2005) Continuous cultures of fused cells secreting antibody of predefined specificity. 1975. J Immunol 174: 2453–2455

    Google Scholar 

  73. Majidi J, Barar J, Baradaran B, Abdolalizadeh J, Omidi Y (2009) Target therapy of cancer: implementation of monoclonal antibodies and nanobodies. Hum Antibodies 18: 81–100

    PubMed  CAS  Google Scholar 

  74. Uchida J, Hamaguchi Y, Oliver JA, Ravetch JV, Poe JC, Haas KM, Tedder TF (2004) The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med 199: 1659–1669

    Article  PubMed  CAS  Google Scholar 

  75. Baselga J, Albanell J (2001) Mechanism of action of anti-HER2 monoclonal antibodies. Ann Oncol 12 (Suppl 1): S35–41

    Article  PubMed  Google Scholar 

  76. Duong HK, Sekeres MA (2009) Targeted treatment of acute myeloid leukemia in older adults: role of gemtuzumab ozogamicin. Clin Interv Aging 4: 197–205

    Article  PubMed  CAS  Google Scholar 

  77. Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA (1982) Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med 155: 1823–1841

    Article  PubMed  CAS  Google Scholar 

  78. Kruit WH, Goey SH, Lamers CH, Gratama JW, Visser B, Schmitz PI, Eggermont AM, Bolhuis RL, Stoter G (1997) High-dose regimen of interleukin-2 and interferonalpha in combination with lymphokine-activated killer cells in patients with metastatic renal cell cancer. J Immunother 20: 312–320

    Article  PubMed  CAS  Google Scholar 

  79. Rosenberg SA, Lotze MT, Yang JC, Topalian SL, Chang AE, Schwartzentruber DJ, Aebersold P, Leitman S, Linehan WM, Seipp CA et al (1993) Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J Natl Cancer Inst 85: 622–632

    Article  PubMed  CAS  Google Scholar 

  80. Law TM, Motzer RJ, Mazumdar M, Sell KW, Walther PJ, O’Connell M, Khan A, Vlamis V, Vogelzang NJ, Bajorin DF (1995) Phase III randomized trial of interleukin-2 with or without lymphokine-activated killer cells in the treatment of patients with advanced renal cell carcinoma. Cancer 76: 824–832

    Article  PubMed  CAS  Google Scholar 

  81. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8: 299–308

    Article  PubMed  CAS  Google Scholar 

  82. Kirkwood JM, Tarhini AA, Panelli MC, Moschos SJ, Zarour HM, Butterfield LH, Gogas HJ (2008) Next generation of immunotherapy for melanoma. J Clin Oncol 26: 3445–3455

    Article  CAS  Google Scholar 

  83. Dudley ME, Wunderlich J, Nishimura MI, Yu D, Yang JC, Topalian SL, Schwartzentruber DJ, Hwu P, Marincola

    Google Scholar 

  84. FM, Sherry R et al (2001) Adoptive transfer of cloned melanoma-reactive T lymphocytes for the treatment of patients with metastatic melanoma. J Immunother 24: 363–373

    Google Scholar 

  85. Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, Robbins PF, Huang J, Citrin DE, Leitman

    Google Scholar 

  86. SF et al (2008) Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 26: 5233–5239

    Article  CAS  Google Scholar 

  87. Besser MJ, Shapira-Frommer R, Treves AJ, Zippel D, Itzhaki O, Hershkovitz L, Levy D, Kubi A, Hovav E, Chermoshniuk N et al (2010) Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients. Clin Cancer Res 16: 2646–2655

    Article  PubMed  CAS  Google Scholar 

  88. Coccoris M, Straetemans T, Govers C, Lamers C, Sleijfer S, Debets R (2010) T cell receptor (TCR) gene therapy to treat melanoma: lessons from clinical and preclinical studies. Expert Opin Biol Ther 10: 547–562

    Article  PubMed  CAS  Google Scholar 

  89. Hawkins RE, Gilham DE, Debets R, Eshhar Z, Taylor N, Abken H, Schumacher TN, Consortium A (2010) Development of adoptive cell therapy for cancer: a clinical perspective. Hum Gene Ther 21: 665–672

    Article  CAS  Google Scholar 

  90. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, Kammula US, Royal RE, Sherry RM, Wunderlich JR et al (2009) Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114: 535–546

    Article  PubMed  CAS  Google Scholar 

  91. Lamers CH, Sleijfer S, Vulto AG, Kruit WH, Kliffen M, Debets R, Gratama JW, Stoter G, Oosterwijk E (2006) Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 24: e20–22

    Article  PubMed  Google Scholar 

  92. Slavin S, Morecki S, Weiss L, Shapira MY, Resnick I, Or R (2004) Nonmyeloablative stem cell transplantation: reduced-intensity conditioning for cancer immunotherapy – from bench to patient bedside. Semin Oncol

    Google Scholar 

  93. 31: 4–21

    Google Scholar 

  94. Demirer T, Barkholt L, Blaise D, Pedrazzoli P, Aglietta M, Carella AM, Bay JO, Arpaci F, Rosti G, Gurman G et al (2008) Transplantation of allogeneic hematopoietic stem cells: an emerging treatment modality for solid tumors. Nat Clin Pract Oncol 5: 256–267

    Article  PubMed  CAS  Google Scholar 

  95. Hacein-Bey-Abina S, Hauer J, Lim A, Picard C, Wang GP, Berry CC, Martinache C, Rieux-Laucat F, Latour S, Belohradsky BH et al (2010) Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 363: 355–364

    Article  PubMed  CAS  Google Scholar 

  96. Borghaei H, Smith MR, Campbell KS (2009) Immunotherapy of cancer. Eur J Pharmacol 625: 41–54

    Article  PubMed  CAS  Google Scholar 

  97. 91 Khanna R, Moss D, Gandhi M (2005) Technology insight: Applications of emerging immunotherapeutic strategies for Epstein-Barr virus-associated malignancies. Nat Clin Pract Oncol 2: 138–149

    Article  PubMed  CAS  Google Scholar 

  98. Trimble CL, Peng S, Kos F, Gravitt P, Viscidi R, Sugar E, Pardoll D, Wu TC (2009) A phase I trial of a human papillomavirus DNA vaccine for HPV16+ cervical intraepithelial neoplasia 2/3. Clin Cancer Res 15: 361–367

    Article  PubMed  CAS  Google Scholar 

  99. Sampson JH, Archer GE, Mitchell DA, Heimberger AB, Bigner DD (2008) Tumor-specific immunotherapy targeting the EGFRvIII mutation in patients with malignant glioma. Semin Immunol 20: 267–275

    Article  PubMed  CAS  Google Scholar 

  100. Weng WK, Czerwinski D, Timmerman J, Hsu FJ, Levy R (2004) Clinical outcome of lymphoma patients after idiotype vaccination is correlated with humoral immune response and immunoglobulin G Fc receptor genotype. J Clin Oncol 22: 4717–4724

    Article  PubMed  CAS  Google Scholar 

  101. Toubaji A, Achtar M, Provenzano M, Herrin VE, Behrens R, Hamilton M, Bernstein S, Venzon D, Gause B, Marincola F, Khleif SN (2008) Pilot study of mutant ras peptide-based vaccine as an adjuvant treatment in pancreatic and colorectal cancers. Cancer Immunol Immunother 57: 1413–1420

    Article  PubMed  CAS  Google Scholar 

  102. Carbone DP, Ciernik IF, Kelley MJ, Smith MC, Nadaf S, Kavanaugh D, Maher VE, Stipanov M, Contois D, Johnson BE et al (2005) Immunization with mutant p53- and K-ras-derived peptides in cancer patients: immune response and clinical outcome. J Clin Oncol 23: 5099–5107

    Article  PubMed  Google Scholar 

  103. Maslak PG, Dao T, Gomez M, Chanel S, Packin J, Korontsvit T, Zakhaleva V, Pinilla-Ibarz J, Berman E, Scheinberg DA (2008) A pilot vaccination trial of synthetic analog peptides derived from the BCR-ABL breakpoints in CML patients with minimal disease. Leukemia 22: 1613–1616

    Article  PubMed  CAS  Google Scholar 

  104. Mackall CL, Rhee EH, Read EJ, Khuu HM, Leitman SF, Bernstein D, Tesso M, Long LM, Grindler D, Merino M et al (2008) A pilot study of consolidative immunotherapy in patients with high-risk pediatric sarcomas. Clin Cancer Res 14: 4850–4858

    Article  PubMed  CAS  Google Scholar 

  105. Tomlins SA, Laxman B, Varambally S, Cao X, Yu J, Helgeson BE, Cao Q, Prensner JR, Rubin MA, Shah RB et al (2008) Role of the TMPRSS2–ERG gene fusion in prostate cancer. Neoplasia 10: 177–188

    Article  PubMed  CAS  Google Scholar 

  106. Yotnda P, Garcia F, Peuchmaur M, Grandchamp B, Duval M, Lemonnier F, Vilmer E, Langlade-Demoyen P (1998) Cytotoxic T cell response against the chimeric ETV6-AML1 protein in childhood acute lymphoblastic leukemia. J Clin Invest 102: 455–462

    Article  PubMed  CAS  Google Scholar 

  107. Oka Y, Tsuboi A, Oji Y, Kawase I, Sugiyama H (2008) WT1 peptide vaccine for the treatment of cancer. Curr Opin Immunol 20: 211–220

    Article  PubMed  CAS  Google Scholar 

  108. Brichard VG, Lejeune D (2007) GSK’s antigen-specific cancer immunotherapy programme: pilot results leading to Phase III clinical development. Vaccine 25 Suppl 2: B61–71

    Article  PubMed  CAS  Google Scholar 

  109. Old LJ (2008) Cancer vaccines: an overview. Cancer Immun 8 Suppl 1: 1

    Google Scholar 

  110. Butterfield LH, Ribas A, Dissette VB, Lee Y, Yang JQ, De la Rocha P, Duran SD, Hernandez J, Seja E, Potter DM et al (2006) A phase I/II trial testing immunization of hepatocellular carcinoma patients with dendritic cells pulsed with four alpha-fetoprotein peptides. Clin Cancer Res 12: 2817–2825

    Article  PubMed  CAS  Google Scholar 

  111. Himoudi N, Nabarro S, Yan M, Gilmour K, Thrasher AJ, Anderson J (2007) Development of anti-PAX3 immune responses; a target for cancer immunotherapy. Cancer Immunol Immunother 56: 1381–1395

    Article  PubMed  CAS  Google Scholar 

  112. van Baren N, Bonnet MC, Dreno B, Khammari A, Dorval T, Piperno-Neumann S, Lienard D, Speiser D, Marchand M, Brichard VG et al (2005) Tumoral and immunologic response after vaccination of melanoma patients with an ALVAC virus encoding MAGE antigens recognized by T cells. J Clin Oncol 23: 9008–9021

    Article  PubMed  CAS  Google Scholar 

  113. Mkrtichyan M, Ghochikyan A, Loukinov D, Davtyan H, Ichim TE, Cribbs DH, Lobanenkov VV, Agadjanyan MG (2008) DNA, but not protein vaccine based on

    Google Scholar 

  114. mutated BORIS antigen significantly inhibits tumor growth and prolongs the survival of mice. Gene Ther 15: 61–64

    Google Scholar 

  115. Silva WA, Jr., Gnjatic S, Ritter E, Chua R, Cohen T, Hsu M, Jungbluth AA, Altorki NK, Chen YT, Old LJ et al (2007) PLAC1, a trophoblast-specific cell surface protein, is expressed in a range of human tumors and elicits spontaneous antibody responses. Cancer Immun 7: 18

    PubMed  Google Scholar 

  116. Tammela J, Uenaka A, Ono T, Noguchi Y, Jungbluth AA, Mhawech-Fauceglia P, Qian F, Schneider S, Sharma S, Driscoll D et al (2006) OY-TES-1 expression and serum immunoreactivity in epithelial ovarian cancer. Int J Oncol 29: 903–910

    PubMed  CAS  Google Scholar 

  117. Chiriva-Internati M, Cobos E, Da Silva DM, Kast WM (2008) Sperm fibrous sheath proteins: a potential new class of target antigens for use in human therapeutic cancer vaccines. Cancer Immun 8: 8

    PubMed  Google Scholar 

  118. Chiriva-Internati M, Ferrari R, Yu Y, Hamrick C, Gagliano N, Grizzi F, Frezza E, Jenkins MR, Hardwick F, D’Cunha N et al (2008) AKAP-4: a novel cancer testis antigen for multiple myeloma. Br J Haematol 140: 465–468

    Article  PubMed  CAS  Google Scholar 

  119. Dubovsky JA, McNeel DG (2007) Inducible expression of a prostate cancer-testis antigen, SSX-2, following treatment with a DNA methylation inhibitor. Prostate 67: 1781–1790

    Article  PubMed  CAS  Google Scholar 

  120. Zhou Q, Guo AL, Xu CR, An SJ, Wang Z, Yang SQ, Wu YL (2008) A dendritic cell-based tumor vaccine for lung cancer: full-length XAGE-1b protein-pulsed dendritic cells induce specific cytotoxic T lymphocytes in vitro. Clin Exp Immunol 153: 392–400

    Article  PubMed  CAS  Google Scholar 

  121. Hoeppner LH, Dubovsky JA, Dunphy EJ, McNeel DG (2006) Humoral immune responses to testis antigens in sera from patients with prostate cancer. Cancer Immun 6: 1

    PubMed  Google Scholar 

  122. Dubovsky JA, Albertini MR, McNeel DG (2007) MADCT- 2 identified as a novel melanoma cancer-testis antigen using phage immunoblot analysis. J Immunother 30: 675–683

    Article  PubMed  CAS  Google Scholar 

  123. Mittendorf EA, Holmes JP, Ponniah S, Peoples GE (2008) The E75 HER2/neu peptide vaccine. Cancer Immunol Immunother 57: 1511–1521

    Article  CAS  Google Scholar 

  124. Antonia SJ, Mirza N, Fricke I, Chiappori A, Thompson P, Williams N, Bepler G, Simon G, Janssen W, Lee JH et al (2006) Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin Cancer Res 12: 878–887

    Article  PubMed  CAS  Google Scholar 

  125. Wondimu A, Zhang T, Kieber-Emmons T, Gimotty P, Sproesser K, Somasundaram R, Ferrone S, Tsao CY, Herlyn D (2008) Peptides mimicking GD2 ganglioside elicit cellular, humoral and tumor-protective immune responses in mice. Cancer Immunol Immunother 57:

    Google Scholar 

  126. 1079–1089

    Google Scholar 

  127. Gulley JL, Arlen PM, Tsang KY, Yokokawa J, Palena C, Poole DJ, Remondo C, Cereda V, Jones JL, Pazdur MP et al (2008) Pilot study of vaccination with recombinant CEA-MUC-1-TRICOM poxviral-based vaccines in patients with metastatic carcinoma. Clin Cancer Res 14: 3060–3069

    Article  PubMed  CAS  Google Scholar 

  128. Rezvani K (2008) PR1 vaccination in myeloid malignancies. Expert Rev Vaccines 7: 867–875

    Article  PubMed  CAS  Google Scholar 

  129. Xiang R, Mizutani N, Luo Y, Chiodoni C, Zhou H, Mizutani M, Ba Y, Becker JC, Reisfeld RA (2005) A DNA vaccine targeting survivin combines apoptosis with suppression of angiogenesis in lung tumor eradication. Cancer Res 65: 553–561

    PubMed  CAS  Google Scholar 

  130. Domchek SM, Recio A, Mick R, Clark CE, Carpenter EL, Fox KR, DeMichele A, Schuchter LM, Leibowitz MS, Wexler MH et al (2007) Telomerase-specific T-cell immunity in breast cancer: effect of vaccination on tumor immunosurveillance. Cancer Res 67: 10546– 10555

    Article  PubMed  CAS  Google Scholar 

  131. Yamaguchi S, Tatsumi T, Takehara T, Sakamori R, Uemura A, Mizushima T, Ohkawa K, Storkus WJ, Hayashi

    Google Scholar 

  132. N (2007) Immunotherapy of murine colon cancer using receptor tyrosine kinase EphA2-derived peptidepulsed dendritic cell vaccines. Cancer 110: 1469–1477

    Google Scholar 

  133. Schmollinger JC, Vonderheide RH, Hoar KM, Maecker B, Schultze JL, Hodi FS, Soiffer RJ, Jung K, Kuroda MJ, Letvin NL et al (2003) Melanoma inhibitor of apoptosis protein (ML-IAP) is a target for immune-mediated tumor destruction. Proc Natl Acad Sci USA 100: 3398– 3403

    Article  PubMed  CAS  Google Scholar 

  134. Birebent B, Mitchell E, Akis N, Li W, Somasundaram R, Purev E, Hoey D, Mastrangelo M, Maguire H, Harris

    Google Scholar 

  135. DT et al (2003) Monoclonal anti-idiotypic antibody mimicking the gastrointestinal carcinoma-associated epitope CO17-1A elicits antigen-specific humoral and cellular immune responses in colorectal cancer patients. Vaccine 21: 1601–1612

    Article  CAS  Google Scholar 

  136. Trakatelli M, Toungouz M, Blocklet D, Dodoo Y, Gordower L, Laporte M, Vereecken P, Sales F, Mortier L, Mazouz N et al (2006) A new dendritic cell vaccine generated with interleukin-3 and interferon-beta induces CD8+ T cell responses against NA17-A2 tumor peptide in melanoma patients. Cancer Immunol Immunother 55: 469–474

    Article  PubMed  CAS  Google Scholar 

  137. Passoni L, Gallo B, Biganzoli E, Stefanoni R, Massimino M, Di Nicola M, Gianni AM, Gambacorti-Passerini C (2006) In vivo T-cell immune response against anaplastic lymphoma kinase in patients with anaplastic large cell lymphomas. Haematologica 91: 48–55

    PubMed  CAS  Google Scholar 

  138. Olson BM, McNeel DG (2007) Antibody and T-cell responses specific for the androgen receptor in patients with prostate cancer. Prostate 67: 1729–1739

    Article  PubMed  CAS  Google Scholar 

  139. Kao H, Marto JA, Hoffmann TK, Shabanowitz J, Finkel stein SD, Whiteside TL, Hunt DF, Finn OJ (2001) Identification of cyclin B1 as a shared human epithelial tumor-associated antigen recognized by T cells. J Exp Med 194: 1313–1323

    Google Scholar 

  140. Wenandy L, Sorensen RB, Svane IM, Thor Straten P, Andersen MH (2008) RhoC a new target for therapeutic vaccination against metastatic cancer. Cancer Immunol Immunother 57: 1871–1878

    Article  PubMed  CAS  Google Scholar 

  141. Ragupathi G, Meyers M, Adluri S, Howard L, Musselli C, Livingston PO (2000) Induction of antibodies against GD3 ganglioside in melanoma patients by vaccination with GD3-lactone-KLH conjugate plus immunological adjuvant QS-21. Int J Cancer 85: 659–666

    Article  PubMed  CAS  Google Scholar 

  142. Dickler MN, Ragupathi G, Liu NX, Musselli C, Martino DJ, Miller VA, Kris MG, Brezicka FT, Livingston PO, Grant SC (1999) Immunogenicity of a fucosyl-GM1-keyhole limpet hemocyanin conjugate vaccine in patients with small cell lung cancer. Clin Cancer Res 5: 2773–2779

    PubMed  CAS  Google Scholar 

  143. Laheru D, Lutz E, Burke J, Biedrzycki B, Solt S, Onners B, Tartakovsky I, Nemunaitis J, Le D, Sugar E et al (2008) Allogeneic granulocyte macrophage colony-stimulating factor-secreting tumor immunotherapy alone or in sequence with cyclophosphamide for metastatic pancreatic cancer: a pilot study of safety, feasibility, and immune activation. Clin Cancer Res 14: 1455–1463

    Article  PubMed  CAS  Google Scholar 

  144. Gribben JG, Ryan DP, Boyajian R, Urban RG, Hedley ML, Beach K, Nealon P, Matulonis U, Campos S, Gilligan TD et al (2005) Unexpected association between induction of immunity to the universal tumor antigen CYP1B1 and response to next therapy. Clin Cancer Res 11: 4430–4436

    Article  PubMed  CAS  Google Scholar 

  145. Livingston PO, Hood C, Krug LM, Warren N, Kris MG, Brezicka T, Ragupathi G (2005) Selection of GM2, fucosyl GM1, globo H and polysialic acid as targets on small cell lung cancers for antibody mediated immunotherapy. Cancer Immunol Immunother 54: 1018– 1025

    Article  PubMed  CAS  Google Scholar 

  146. Mazorra Z, Mesa C, Fernandez A, Fernandez LE (2008) Immunization with a GM3 ganglioside nanoparticulated vaccine confers an effector CD8(+) T cells-mediated protection against melanoma B16 challenge. Cancer Immunol Immunother 57: 1771–1780

    Article  PubMed  CAS  Google Scholar 

  147. Gilewski T, Ragupathi G, Bhuta S, Williams LJ, Musselli C, Zhang XF, Bornmann WG, Spassova M, Bencsath KP, Panageas KS et al (2001) Immunization of metastatic breast cancer patients with a fully synthetic globo Hconjugate: a phase I trial. Proc Natl Acad Sci USA 98: 3270–3275

    Article  PubMed  CAS  Google Scholar 

  148. Boss CN, Grunebach F, Brauer K, Hantschel M, Mirakaj V, Weinschenk T, Stevanovic S, Rammensee HG, Brossart P (2007) Identification and characterization of T-cell epitopes deduced from RGS5, a novel broadly expressed tumor antigen. Clin Cancer Res 13: 3347– 3355

    Article  PubMed  CAS  Google Scholar 

  149. Yajima N, Yamanaka R, Mine T, Tsuchiya N, Homma J, Sano M, Kuramoto T, Obata Y, Komatsu N, Arima Y et al (2005) Immunologic evaluation of personalized peptide vaccination for patients with advanced malignant glioma. Clin Cancer Res 11: 5900–5911

    Article  PubMed  CAS  Google Scholar 

  150. Lucas S, Coulie PG (2008) About human tumor antigens to be used in immunotherapy. Semin Immunol 20: 301–307

    Article  PubMed  CAS  Google Scholar 

  151. Harashima N, Tanaka K, Sasatomi T, Shimizu K, Miyagi Y, Yamada A, Tamura M, Yamana H, Itoh K, Shichijo S (2001) Recognition of the Lck tyrosine kinase as a tumor antigen by cytotoxic T lymphocytes of cancer patients with distant metastases. Eur J Immunol 31: 323–332

    Article  PubMed  CAS  Google Scholar 

  152. Maciag PC, Seavey MM, Pan ZK, Ferrone S, Paterson Y (2008) Cancer immunotherapy targeting the high molecular weight melanoma-associated antigen protein results in a broad antitumor response and reduction of pericytes in the tumor vasculature. Cancer Res 68: 8066–8075

    Article  PubMed  CAS  Google Scholar 

  153. Chen YW, Tekle C, Fodstad O (2008) The immunoregulatory protein human B7H3 is a tumor-associated antigen that regulates tumor cell migration and invasion. Curr Cancer Drug Targets 8: 404–413

    Article  PubMed  CAS  Google Scholar 

  154. Lewen S, Zhou H, Hu HD, Cheng T, Markowitz D, Reisfeld RA, Xiang R, Luo Y (2008) A Legumain-based minigene vaccine targets the tumor stroma and suppresses breast cancer growth and angiogenesis. Cancer Immunol

    Google Scholar 

  155. Immunother 57: 507–515

    Google Scholar 

  156. Olson WC, Heston WD, Rajasekaran AK (2007) Clinical trials of cancer therapies targeting prostate-specific membrane antigen. Rev Recent Clin Trials 2: 182–190

    Article  PubMed  CAS  Google Scholar 

  157. Yee C, Thompson JA, Byrd D, Riddell SR, Roche P, Celis E, Greenberg PD (2002) Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA 99: 16168–16173

    Article  PubMed  CAS  Google Scholar 

  158. Smith FO, Downey SG, Klapper JA, Yang JC, Sherry RM Royal RE, Kammula US, Hughes MS, Restifo NP, Levy CL et al (2008)Treatment of metastatic melanoma using interleukin-2 alone or in conjunction with vaccines. Clin Cancer Res 14: 5610–5618

    Article  PubMed  CAS  Google Scholar 

  159. Bergman PJ, McKnight J, Novosad A, Charney S, Farrelly J, Craft D, Wulderk M, Jeffers Y, Sadelain M, Hohenhaus AE et al (2003) Long-term survival of dogs with advanced malignant melanoma after DNA vaccination with xenogeneic human tyrosinase: a phase I trial. Clin Cancer Res 9: 1284–1290

    PubMed  CAS  Google Scholar 

  160. Madan RA, Gulley JL, Schlom J, Steinberg SM, Liewehr DJ, Dahut WL, Arlen PM (2008) Analysis of overall survival in patients with nonmetastatic castration-resistant prostate cancer treated with vaccine, nilutamide, and combination therapy. Clin Cancer Res 14: 4526–4531

    Article  PubMed  CAS  Google Scholar 

  161. Small EJ, Schellhammer PF, Higano CS, Redfern CH, Nemunaitis JJ, Valone FH, Verjee SS, Jones LA, Hershberg RM (2006) Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone

    Google Scholar 

  162. refractory prostate cancer. J Clin Oncol 24: 3089–3094

    Google Scholar 

  163. Krug LM, Ragupathi G, Hood C, Kris MG, Miller VA, Allen JR, Keding SJ, Danishefsky SJ, Gomez J, Tyson L et al (2004) Vaccination of patients with small-cell lung cancer with synthetic fucosyl GM-1 conjugated to keyhole limpet hemocyanin. Clin Cancer Res 10: 6094–6100

    Article  PubMed  CAS  Google Scholar 

  164. Wolchok JD, Yuan J, Houghton AN, Gallardo HF, Rasalan TS, Wang J, Zhang Y, Ranganathan R, Chapman PB, Krown SE et al (2007) Safety and immunogenicity of tyrosinase DNA vaccines in patients with melanoma. Mol Ther 15: 2044–2050

    Article  PubMed  CAS  Google Scholar 

  165. Garcia-Hernandez Mde L, Gray A, Hubby B, Klinger OJ, Kast WM (2008) Prostate stem cell antigen vaccination induces a long-term protective immune response against prostate cancer in the absence of autoimmunity. Cancer Res 68: 861–869

    Article  PubMed  CAS  Google Scholar 

  166. Theurillat JP, Zurrer-Hardi U, Varga Z, Storz M, Probst- Hensch NM, Seifert B, Fehr MK, Fink D, Ferrone S, Pestalozzi B et al (2007) NY-BR-1 protein expression in breast carcinoma: a mammary gland differentiation antigen as target for cancer immunotherapy. Cancer Immunol Immunother 56: 1723–1731

    Article  PubMed  CAS  Google Scholar 

  167. Yan M, Himoudi N, Pule M, Sebire N, Poon E, Blair A, Williams O, Anderson J (2008) Development of cellular immune responses against PAX5, a novel target for cancer immunotherapy. Cancer Res 68: 8058–8065

    Article  PubMed  CAS  Google Scholar 

  168. Yokokawa J, Bera TK, Palena C, Cereda V, Remondo C, Gulley JL, Arlen PM, Pastan I, Schlom J, Tsang KY (2007) Identification of cytotoxic T-lymphocyte epitope(s) and its agonist epitope(s) of a novel target for vaccine therapy (PAGE4). Int J Cancer 121: 595–605

    Article  PubMed  CAS  Google Scholar 

  169. Lepisto AJ, Moser AJ, Zeh H, Lee K, Bartlett D, McKolanis JR, Geller BA, Schmotzer A, Potter DP, Whiteside T et al (2008) A phase I/II study of a MUC1 peptide pulsed autologous dendritic cell vaccine as adjuvant therapy in patients with resected pancreatic and biliary tumors. Cancer Ther 6: 955–964

    PubMed  CAS  Google Scholar 

  170. Sabbatini PJ, Ragupathi G, Hood C, Aghajanian CA, Juretzka M, Iasonos A, Hensley ML, Spassova MK, Ouerfelli O, Spriggs DR et al (2007) Pilot study of a heptavalent vaccine-keyhole limpet hemocyanin conjugate plus QS21 in patients with epithelial ovarian, fallopian tube, or peritoneal cancer. Clin Cancer Res 13: 4170–4177

    Article  PubMed  CAS  Google Scholar 

  171. Tarp MA, Sorensen AL, Mandel U, Paulsen H, Burchell J, Taylor-Papadimitriou J, Clausen H (2007) Identification of a novel cancer-specific immunodominant glycopeptide epitope in the MUC1 tandem repeat. Glycobiology 17: 197–209

    Article  PubMed  CAS  Google Scholar 

  172. Luo Y, Wen YJ, Ding ZY, Fu CH, Wu Y, Liu JY, Li Q, He QM, Zhao X, Jiang Y et al (2006) Immunotherapy of tumors with protein vaccine based on chicken homologous Tie-2. Clin Cancer Res 12: 1813–1819

    Article  PubMed  CAS  Google Scholar 

  173. Niethammer AG, Xiang R, Becker JC, Wodrich H, Pertl U, Karsten G, Eliceiri BP, Reisfeld RA (2002) A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nat Med 8: 1369–1375

    Article  PubMed  CAS  Google Scholar 

  174. Lee J, Fassnacht M, Nair S, Boczkowski D, Gilboa E (2005) Tumor immunotherapy targeting fibroblast activation protein, a product expressed in tumorassociated fibroblasts. Cancer Res 65: 11156–11163

    Article  PubMed  CAS  Google Scholar 

  175. Kaplan CD, Kruger JA, Zhou H, Luo Y, Xiang R, Reisfeld RA (2006) A novel DNA vaccine encoding PDGFRbeta suppresses growth and dissemination of murine colon, lung and breast carcinoma. Vaccine 24: 6994–7002

    Article  PubMed  CAS  Google Scholar 

  176. Luo Y, Zhou H, Mizutani M, Mizutani N, Liu C, Xiang R, Reisfeld RA (2005) A DNA vaccine targeting Fos-related antigen 1 enhanced by IL-18 induces long-lived T-cell memory against tumor recurrence. Cancer Res

    Google Scholar 

  177. 65: 3419–3427 165 den Haan JM, Meadows LM, Wang W, Pool J, Blokland E, Bishop TL, Reinhardus C, Shabanowitz J, Offringa R, Hunt DF et al (1998) The minor histocompatibility antigen HA-1: a diallelic gene with a single amino acid polymorphism. Science 279: 1054–1057

    Google Scholar 

  178. Mommaas B, Kamp J, Drijfhout JW, Beekman N, Ossendorp F, Van Veelen P, Den Haan J, Goulmy E, Mutis T (2002) Identification of a novel HLA-B60-restricted T cell epitope of the minor histocompatibility antigen HA-1 locus. J Immunol 169: 3131–3136

    PubMed  CAS  Google Scholar 

  179. den Haan JM, Sherman NE, Blokland E, Huczko E, Koning F, Drijfhout JW, Skipper J, Shabanowitz J, Hunt DF, Engelhard VH et al (1995) Identification of a graft versus host disease-associated human minor histocompatibility antigen. Science 268: 1476–1480

    Article  Google Scholar 

  180. Spierings E, Brickner AG, Caldwell JA, Zegveld S, Tatsis N, Blokland E, Pool J, Pierce RA, Mollah S, Shabanowitz J et al (2003) The minor histocompatibility antigen HA-3 arises from differential proteasome-mediated cleavage of the lymphoid blast crisis (Lbc) oncoprotein. Blood 102: 621–629

    Article  PubMed  CAS  Google Scholar 

  181. Brickner AG, Warren EH, Caldwell JA, Akatsuka Y, Golovina TN, Zarling AL, Shabanowitz J, Eisenlohr LC, Hunt DF, Engelhard VH, Riddell SR (2001) The immunogenicity of a new human minor histocompatibility antigen results from differential antigen processing. J Exp Med 193: 195–206

    Article  PubMed  CAS  Google Scholar 

  182. Dolstra H, Fredrix H, Maas F, Coulie PG, Brasseur F, Mensink E, Adema GJ, de Witte TM, Figdor CG, van de Wielvan Kemenade E (1999) A human minor histocompatibility

    Google Scholar 

  183. antigen specific for B cell acute lymphoblastic

    Google Scholar 

  184. leukemia. J Exp Med 189: 301–308

    Google Scholar 

  185. Akatsuka Y, Nishida T, Kondo E, Miyazaki M, Taji H, Iida

    Google Scholar 

  186. H, Tsujimura K, Yazaki M, Naoe T, Morishima Y et al (2003) Identification of a polymorphic gene, BCL2A1, encoding two novel hematopoietic lineage-specific minor histocompatibility antigens. J Exp Med 197: 1489–1500

    Google Scholar 

  187. Terakura S, Murata M, Warren EH, Sette A, Sidney J, Naoe T, Riddell SR (2007) A single minor histocompatibility antigen encoded by UGT2B17 and presented by human leukocyte antigen-A*2902 and -B*4403. Transplantation 83: 1242–1248

    Article  PubMed  CAS  Google Scholar 

  188. de Rijke B, van Horssen-Zoetbrood A, Beekman JM, Otterud B, Maas F, Woestenenk R, Kester M, Leppert M, Schattenberg AV, de Witte T et al (2005) A frameshift polymorphism in P2X5 elicits an allogeneic cytotoxic T lymphocyte response associated with remission of chronic myeloid leukemia. J Clin Invest 115: 3506– 3516

    Article  PubMed  CAS  Google Scholar 

  189. Warren EH, Vigneron NJ, Gavin MA, Coulie PG, Stroobant V, Dalet A, Tykodi SS, Xuereb SM, Mito JK, Riddell SR, Van den Eynde BJ (2006) An antigen produced by splicing of noncontiguous peptides in the reverse order. Science 313: 1444–1447

    Article  PubMed  CAS  Google Scholar 

  190. Brickner AG, Evans AM, Mito JK, Xuereb SM, Feng X, Nishida T, Fairfull L, Ferrell RE, Foon KA, Hunt DF et al (2006) The PANE1 gene encodes a novel human minor histocompatibility antigen that is selectively expressed in B-lymphoid cells and B-CLL. Blood 107: 3779–3786

    Article  PubMed  CAS  Google Scholar 

  191. Tykodi SS, Fujii N, Vigneron N, Lu SM, Mito JK, Miranda MX, Chou J, Voong LN, Thompson JA, Sandmaier BM et al (2008) C19orf48 encodes a minor histocompatibility antigen recognized by CD8+ cytotoxic T cells from renal cell carcinoma patients. Clin Cancer Res 14: 5260–5269

    Article  PubMed  CAS  Google Scholar 

  192. Slager EH, Honders MW, van der Meijden ED, van Luxemburg- Heijs SA, Kloosterboer FM, Kester MG, Jedema I, Marijt WA, Schaafsma MR, Willemze R, Falkenburg JH (2006) Identification of the angiogenic endothelialcell growth factor-1/thymidine phosphorylase as a potential target for immunotherapy of cancer. Blood 107: 4954–4960

    Article  PubMed  CAS  Google Scholar 

  193. Torikai H, Akatsuka Y, Miyazaki M, Tsujimura A, Yatabe Y, Kawase T, Nakao Y, Tsujimura K, Motoyoshi K, Morishima Y et al (2006) The human cathepsin H gene encodes two novel minor histocompatibility antigen epitopes restricted by HLA-A*3101 and -A*3303. Br J Haematol 134: 406–416

    Article  PubMed  CAS  Google Scholar 

  194. van Bergen CA, Kester MG, Jedema I, Heemskerk MH, van Luxemburg-Heijs SA, Kloosterboer FM, Marijt WA, de Ru AH, Schaafsma MR, Willemze R et al (2007) Multiple myeloma-reactive T cells recognize an activationinduced minor histocompatibility antigen encoded by the ATP-dependent interferon-responsive (ADIR) gene. Blood 109: 4089–4096

    Article  PubMed  CAS  Google Scholar 

  195. Kawase T, Akatsuka Y, Torikai H, Morishima S, Oka A, Tsujimura A, Miyazaki M, Tsujimura K, Miyamura K, Ogawa S et al (2007) Alternative splicing due to an intronic SNP in HMSD generates a novel minor histocompatibility antigen. Blood 110: 1055–1063

    Article  PubMed  CAS  Google Scholar 

  196. Spaapen RM, Lokhorst HM, van den Oudenalder K, Otterud BE, Dolstra H, Leppert MF, Minnema MC, Bloem AC, Mutis T (2008) Toward targeting B cell can cers with CD4+ CTLs: identification of a CD19-encoded minor histocompatibility antigen using a novel genome-wide analysis. J Exp Med 205: 2863–2872

    Article  PubMed  CAS  Google Scholar 

  197. Pierce RA, Field ED, den Haan JM, Caldwell JA, White FM, Marto JA, Wang W, Frost LM, Blokland E, Reinhardus C et al (1999) Cutting edge: the HLA-A*0101-restricted HY minor histocompatibility antigen originates from DFFRY and contains a cysteinylated cysteine residue as identified by a novel mass spectrometric technique. J Immunol 163: 6360–6364

    PubMed  CAS  Google Scholar 

  198. Vogt MH, de Paus RA, Voogt PJ, Willemze R, Falkenburg JH (2000) DFFRY codes for a new human male-specific minor transplantation antigen involved in bone marrow graft rejection. Blood 95: 1100–1105

    PubMed  CAS  Google Scholar 

  199. Meadows L, Wang W, den Haan JM, Blokland E, Reinhardus C, Drijfhout JW, Shabanowitz J, Pierce R, Agulnik AI, Bishop CE et al (1997) The HLA-A*0201-restricted H-Y antigen contains a posttranslationally modified cysteine that significantly affects T cell recognition. Immunity 6: 273–281

    Article  PubMed  CAS  Google Scholar 

  200. Torikai H, Akatsuka Y, Miyazaki M, Warren EH, 3rd, Oba T, Tsujimura K, Motoyoshi K, Morishima Y, Kodera Y, Kuzushima K, Takahashi T (2004) A novel HLAA* 3303-restricted minor histocompatibility antigen encoded by an unconventional open reading frame of human TMSB4Y gene. J Immunol 173: 7046–7054

    PubMed  CAS  Google Scholar 

  201. Wang W, Meadows LR, den Haan JM, Sherman NE, Chen Y, Blokland E, Shabanowitz J, Agulnik AI, Hendrickson RC, Bishop CE et al (1995) Human H-Y: a male-specific histocompatibility antigen derived from the SMCY protein. Science 269: 1588–1590

    Article  PubMed  CAS  Google Scholar 

  202. Vogt MH, Goulmy E, Kloosterboer FM, Blokland E, de Paus RA, Willemze R, Falkenburg JH (2000) UTY gene codes for an HLA-B60-restricted human male-specific minor histocompatibility antigen involved in stem cell graft rejection: characterization of the critical polymorphic amino acid residues for T-cell recognition. Blood 96: 3126–3132

    PubMed  CAS  Google Scholar 

  203. Vogt MH, van den Muijsenberg JW, Goulmy E, Spierings E, Kluck P, Kester MG, van Soest RA, Drijfhout JW, Willemze R, Falkenburg JH (2002) The DBY gene codes for an HLA-DQ5-restricted human male-specific minor histocompatibility antigen involved in graft-versushost disease. Blood 99: 3027–3032

    Article  PubMed  CAS  Google Scholar 

  204. Zorn E, Miklos DB, Floyd BH, Mattes-Ritz A, Guo L

    Google Scholar 

  205. Soiffer RJ, Antin JH, Ritz J (2004) Minor histocompatibility antigen DBY elicits a coordinated B and T cell response after allogeneic stem cell transplantation. J Exp Med 199: 1133–1142

    Article  PubMed  CAS  Google Scholar 

  206. Spierings E, Vermeulen CJ, Vogt MH, Doerner LE, Falkenburg JH, Mutis T, Goulmy E (2003) Identification of HLA class II-restricted H-Y-specific T-helper epitope evoking CD4+ T-helper cells in H-Y-mismatched transplantation. Lancet 362: 610–615

    Article  PubMed  CAS  Google Scholar 

  207. Warren EH, Gavin MA, Simpson E, Chandler P, Page DC, Disteche C, Stankey KA, Greenberg PD, Riddell SR (2000) The human UTY gene encodes a novel HLA-B8- restricted H-Y antigen. J Immunol 164: 2807–2814

    PubMed  CAS  Google Scholar 

  208. Ivanov R, Aarts T, Hol S, Doornenbal A, Hagenbeek A

    Google Scholar 

  209. Petersen E, Ebeling S (2005) Identification of a 40S ribosomal protein S4-derived H-Y epitope able to elicit a lymphoblast-specific cytotoxic T lymphocyte response. Clin Cancer Res 11: 1694–1703

    Article  PubMed  Google Scholar 

  210. Winter MC, Hancock BW (2009) Ten years of rituximab in NHL. Expert Opin Drug Saf 8: 223–235

    Article  PubMed  CAS  Google Scholar 

  211. Brufsky A (2010) Trastuzumab-based therapy for patients with HER2-positive breast cancer: from early scientific development to foundation of care. Am J Clin Oncol 33: 186–195

    PubMed  CAS  Google Scholar 

  212. Jenab-Wolcott J, Giantonio BJ (2009) Bevacizumab: current indications and future development for man agement of solid tumors. Expert Opin Biol Ther 9: 507–517

    Article  PubMed  CAS  Google Scholar 

  213. Dempke WC, Suto T, Reck M (2010) Targeted therapies for non-small cell lung cancer. Lung Cancer 67: 257–274

    Article  PubMed  Google Scholar 

  214. Greenberg S, Rugo HS (2010) Triple-negative breast cancer: role of antiangiogenic agents. Cancer J 16: 33–38

    Article  PubMed  CAS  Google Scholar 

  215. Le Tourneau C, Chen EX (2008) Molecularly targeted agents in the treatment of recurrent or metastatic squamous cell carcinomas of the head and neck. Hematol Oncol Clin North Am 22: 1209–1220, ix

    Google Scholar 

  216. Santos ES, Kharfan-Dabaja MA, Ayala E, Raez LE (2006) Current results and future applications of radioimmunotherapy management of non-Hodgkin’s lymphoma. Leuk Lymphoma 47: 2453–2476

    Article  PubMed  CAS  Google Scholar 

  217. Robak T (2008) Alemtuzumab for B-cell chronic lymphocytic leukemia. Expert Rev Anticancer Ther 8: 1033–1051

    Article  PubMed  CAS  Google Scholar 

  218. Eng C (2010) The evolving role of monoclonal antibodies in colorectal cancer: early presumptions and impact on clinical trial development. Oncologist 15: 73–84

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan W. Gratama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Birkhäuser Basel

About this chapter

Cite this chapter

Gratama, J.W., Lamers, C.H.J., Debets, R. (2011). A10 Cancer immunity. In: Nijkamp, F., Parnham, M. (eds) Principles of Immunopharmacology. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0136-8_10

Download citation

Publish with us

Policies and ethics