Skip to main content

Microstructural Inhomogeneity and Mechanical Anisotropy Associated with Bedding in Rothbach Sandstone

  • Chapter
  • First Online:
Rock Physics and Natural Hazards

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 1233 Accesses

Abstract

This study present the result of conventional triaxial tests conducted on samples of Rothbach sandstone cored parallel, oblique (at 45 degrees) and perpendicular to the bedding at effective pressures ranging from 5 to 250 MPa. Mechanical and microstructural data were ased to determine the role of the bedding on mechanical strength and failure mode. We find that samples cored at 45 degrees to the bedding yield at intermediate level of differential stress between the ones for parallel and perpendicular samples at all effective pressures. Strain localization at high confining pressure (i.e., in the compactive domain) is observed in samples perpendicular and oblique to the bedding but not in samples cored parallel to the bedding. However, porosity reduction is comparable whether compactive shear bands, compaction bands or homogeneous cataclastic flow develop. Microstructural data suggest that (1) mechanical anisotropy is controlled by a preferred intergranular contact alignment parallel to the bedding and that (2) localization of compaction is controlled by bedding laminations and grain scale heterogeneity, which both prevent the development of well localized compaction features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baud, P., Klein, E., and Wong, T.-F. (2004), Compaction localization in porous sandstones: spatial evolution of damage and acoustic emission activity, J. Struct. Geol. 26 (4), 603–624.

    Article  Google Scholar 

  • Baud, P., Louis, L., David, C. Rawling, G.C., and Wong, T.-f. (2005), Effects of bedding and foliation on mechanical anisotropy, damage evolution and failure mode, Geol. Soc. London Special Publ. 245, 223–249.

    Article  Google Scholar 

  • Baud, P., Vajdova, V., and Wong, T.-F (2006), Shear-enhanced compaction and strain localization: Inelastic deformation and constitutive modeling of four porous sandstones J. Geophys. Res., 111 (B12), doi: 10.1029/2005JB004101.

    Google Scholar 

  • Bésuelle, P., Baud, P., and Wong, T.-F. (2003), Failure mode and spatial distribution of damage in Rothbach sandstone in the brittle-ductile transition, Pure Appl. Geophys. 160 (5–6), 851–868.

    Article  Google Scholar 

  • Bésuelle, P., Desrues, J., and Raynaud, S. (2000), Experimental characterization of the localisation phenomenon, inside a Vosges sandstone in a triaxial cell, Int. J. Rock Mech. 37, 1223–1237.

    Article  Google Scholar 

  • Carroll, M. M. (1991), A critical state plasticity theory for porous reservoir rock, Recent Adv. Mechan. Struct. Continua 117.

    Google Scholar 

  • David, C., Wong, T.F., Zhu, W., and Zhang, J. (1994), Laboratory measurement of compaction induced permeability change in porous rocks: Implication for the generation and maintenance of pore pressure excess in the crust, Pure Appl. Geophys. 143 425–456.

    Article  Google Scholar 

  • Desrues, J., Chambon, R., Mokni, M., and Mazerolle, F. (1996), Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography Geotechnique 46 (3), 529–546.

    Article  Google Scholar 

  • DiMaggio, F. L. and Sandler, I. S. (1971), Material model for granular soils, J. Eng. Mech. Div. Am. Soc. Civ. Eng. 97, 935–950.

    Google Scholar 

  • Hull, D., An Introduction to Composite Materials (Cambridge University Press, Cambridge 1981).

    Google Scholar 

  • Jaeger J. C., Fundamentals of Rock Mechanics (Chapman and Hall, London 1979).

    Google Scholar 

  • Katsman, R., Aharonov, E., and Scher, H. (2005), Numerical simulation of compaction bands in high-porosity sedimentary rock, Mechan. Mat. 37, 143–162.

    Article  Google Scholar 

  • Ketcham R. A. and Carlson, W. D. (2001), Acquisition, optimization and interpretation of X-ray computed tomographic imagery: Applications to the geosciences, Comp. and Geosci. 27 (4), 381–400.

    Article  Google Scholar 

  • Ketcham, R. A. and Iturrino, G. J. (2005), Nondestructive high-resolution visualization and measurement of anisotropic effective porosity in complex lithologies using high-resolution X-ray computed tomography, J. Hydrol. 302 (1–4), 92–106.

    Article  Google Scholar 

  • Louis, L., Wong, T.-f., and Baud, P. (2007a), Imaging strain localization by X-ray radiography and digital image correlation: Deformation bands in Rothbach sandstone, J. Struct. Geol. 29 (1), 129–140.

    Article  Google Scholar 

  • Louis, L., Baud, P., and Wong, T.-f. (2007b), Characterization of pore-space heterogeneity in sandstone by X-ray computed tomography, Geol. Soc. London Special Publ. 284, 127–146.

    Article  Google Scholar 

  • Louis, L., David, C., Metz, V., Robion, P., Menendez, B., and Kissel, C. (2005), Microstructural control on the anisotropy of elastic and transport properties in undeformed sandstones, Int. J. Rock Mech. 42 (7–8), 911–923.

    Article  Google Scholar 

  • Menendez, B., Zhu, W. L., and Wong, T. F. (1996), Micromechanics of brittle faulting and cataclastic flow in Berea sandstone, J. Struct. Geol. 18 (1) 1–16.

    Article  Google Scholar 

  • Millien A., Comportement anisotrope du grès des Vosges: élasto-plasticité, localisation, rupture (Ph.D. Thesis, Université Joseph Fourier — Grenoble I, Grenoble 1992).

    Google Scholar 

  • Oda, M. (1993), Inherent and induced anisotropy in plasticity theory of granular soils, Mechan. Mater. 16 (1–2), 35–45.

    Article  Google Scholar 

  • Rawling, G. C., Baud, P. and Wong, T.-F. (2002), Dilatancy, brittle strength, and anisotropy of foliated rocks: Experimental deformation and micromechanical modeling, J. Geophys. Res.-Sol. Earth 107 (B10), ETG 8–1.

    Google Scholar 

  • Underwood, E. E., Quantitative Stereology (Addison-Wesley, MA, 1970).

    Google Scholar 

  • Vinegar, H. J., De Waal, J. A., and Wellingtom, S. L. (1991), ST studies of brittle failure in castlegate sandstone Int. J. Rock Mech. 28 (5), 441–448.

    Article  Google Scholar 

  • Walsh, J. B. and Brace W.F. (1964), A fracture criterion for brittle anisotropic rock, J. Geophys. Res. 69 (3), 449–456.

    Google Scholar 

  • Wang, B., Chen, Y., and Wong T.-F. (2008), A discrete element model for the development of compaction localization in granular rock, J. Geophys. Res. 113, doi:10.1029/2006JB004501.

    Google Scholar 

  • Wong, T.-f., David, C., and Zhu W. (1997), The transition from brittle faulting to cataclastic flow in porous sandstones: Mechanical deformation, J. Geophys. Res. 102 3009–3025.

    Article  Google Scholar 

  • Wong, T.-f. and Wu, L. C. (1995), Tensile stress concentration and compressive failure in cemented granular material, Geophys. Res. Lett. 22, 1649–1652.

    Article  Google Scholar 

  • Zhang, J. Wong, T.-F., and Davis, D. M. (1990), Micromechanics of pressure-induced grain crushingin porous rocks, J. Geophys. Res. 95, 341–352.

    Article  Google Scholar 

  • Zhu W. and Wong, T.-F. (1997), The transition from brittle faulting to cataclastic flow in porous sandstones: Permeability evolution, J. Geophys. Res. 102, 3027–3041.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag, Basel

About this chapter

Cite this chapter

Louis, L., Baud, P., Wong, TF. (2009). Microstructural Inhomogeneity and Mechanical Anisotropy Associated with Bedding in Rothbach Sandstone. In: Vinciguerra, S., Bernabé, Y. (eds) Rock Physics and Natural Hazards . Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0122-1_15

Download citation

Publish with us

Policies and ethics