Skip to main content

The 15 August 2007 Peru Earthquake and Tsunami: Influence of the Source Characteristics on the Tsunami Heights

  • Chapter
  • First Online:
Tsunami Science Four Years after the 2004 Indian Ocean Tsunami

Abstract

The tsunami caused by the 2007 Peru earthquake (Mw 8.0) provoked less damage than by the seismic shaking itself (numerous casualties due to the earthquake in the vicinity of Pisco). However, it propagated across the Pacific Ocean and small waves were observed on one tide gauge in Taiohae Bay (Nuku Hiva, Marquesas, French Polynesia). We invert seismological data to recover the rupture pattern in two steps. The first step uses surface waves to find a solution for the moment tensor, and the second step uses body waves to compute the slip distribution in the source area. We find the slip distribution to consist of two main slip patches in the source area. The inversion of surface waves yields a scalar moment of 8.9 1020 Nm, and body-wave inversion gives 1.4 1021 Nm. The inversion of tsunami data recorded on a single deep ocean sensor also can be used to compute a fault slip pattern (yielding a scalar moment of 1.1 1021 Nm). We then use these different sources to model the tsunami propagation across the Pacific Ocean, especially towards Nuku Hiva. While the source model taken from the body-wave inversion yields computed tsunami waves systematically too low with respect to observations (on the central Pacific Ocean DART buoy as on the Polynesian tide gauge), the source model established from the surface-wave inversion is more efficient to fit the observations, confirming that the tsunami is sensitive to the low frequency component of the source. Finally we also discuss the modeling of the late tsunami arrivals in Taiohae Bay using several friction coefficients for the sea bottom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chlieh, M., de Chabalier, J.-B., Ruegg, J.-C., Armijo, R., Dmowska, R., Campos, J., and Feigl, K.L. (2004). Crustal deformation and fault slip during the seismic cycle in the North Chile subduction zone, from GPS and InSAR observations, Geophys. J. Int. 158, 695–711.

    Article  Google Scholar 

  • Comte, D. and Pardo, M. (1991), Reappraisal of great historical earthquakes in the Northern Chile and Southern Peru seismic gaps, Nat. Hazards 4, 23–44.

    Article  Google Scholar 

  • Delouis, B., Monfret, T., Dorbath, L., Pardo, M., Rivera, L., Comte, D., Haessler, H., Caminade, J.P., Ponce, L., Kausel, E., and Cisternas, A. (1997), The M w =8.0 Antofagasta (Northern Chile) earthquake of 30 July 1995: A precursor to the end of the large 1877 gap, Bull. Seismol. Soc. Am. 87 (2), 427–445.

    Google Scholar 

  • Dorbath, L., Cisternas, A., and Dorbath, C. (1990), Assessment of the size of large and great historical earthquakes in Peru. Bull. Seismol. Soc. Am. 80, 551–576.

    Google Scholar 

  • Dziewonski, A.M., and Anderson, D.L. (1981), Preliminary reference Earth model, Phys. Earth Planet. Inter. 25, 197–256.

    Article  Google Scholar 

  • Fritz, H. M., Kalligeris, N., Borrero, J.C., Broncano, P., and Ortega, E. (2008), The 15 August 2007 Peru tsunami runup observations and modeling, Geophys. Res. Lett. 35, L10604, doi: 10.1029/2008GL033494.

    Article  Google Scholar 

  • Guibourg, S., Heinrich P., and Roche, R. (1997), Numerical modeling of the 1995 Chilean tsunami. Impact on French Polynesia, Geophys. Res. Lett. 24, 775–778.

    Article  Google Scholar 

  • Hébert, H., Heinrich, P., Schindelé, F., and Piatanesi, A. (2001a), Far-field simulation of tsunami propagation in the Pacific Ocean: Impact on the Marquesas Islands (French Polynesia), J. Geophys. Res. 106, C5, 9161–9177.

    Article  Google Scholar 

  • Hébert, H., Schindelé, F., and Heinrich, P (2001b), Tsunami risk assessment in the Marquesas Islands (French Polynesia) through numerical modeling of generic far-field event, Nat. Hazards Earth Syst. Sci. 1, 233–242.

    Google Scholar 

  • Hébert H., Sladen, A., and Schindelé, F. (2007), Numerical modeling of the Great 2004 Indian Ocean Tsunami focus on the Mascarene Islands, Bull. Seismol. Soc. Am. 97, 1A, S208–S222.

    Article  Google Scholar 

  • Heinrich, P., Schindelé, F., Guibourg, S., and Ihmlé, P. (1998), Modeling of the February 1996 Peruvian tsunami, Geophys. Res. Lett. 25, 2687–2690.

    Article  Google Scholar 

  • Hsu, Y., Simons, M., Avouac, J., Galetzka, J., Sieh, K., Chlieh, M., Natawidjaja, D., Prawirodirdjo, L., and Bock, Y. (2006), Frictional afterslip following the 2005 Nias-Simeulue earthquake, Science 312, 1921–1926.

    Article  Google Scholar 

  • Kendrick, E., Bevis, M., Smalley, R.J., Brooks, B., Vargas, R.B., Lauría, E., and Fortes, L.P.S. (2003), The Nazca-South America Euler vector and its rate of change, J. South Amer. Earth Sci. 16, 125–131.

    Article  Google Scholar 

  • Konca, A., Hjorleifsdottir, V., Song, T.R.-A., Avouac, J.-P., Helmberger, D., Ji, C., Sieh, K., Briggs, R., and Meltzner, A. (2007), Rupture kinematics of the 2005, M w 8.6, Nias-Simeulue earthquake from the joint inversion of seismic and geodetic data, Bull. Seismol. Soc. Am. 97, S307–322.

    Article  Google Scholar 

  • Kowalik, Z., and Murty, T.S. (1993), Numerical simulation of two-dimensional tsunami runup, Marine Geodesy 16, 87–100.

    Article  Google Scholar 

  • Liu, P.L.-F., Cho, Y.-S., Yoon, S.B., and Seo, S.N. (1994), Numerical simulations of the 1960 Chilean tsunami propagation and inundation at Hilo, Hawaii. In, Y. Tsuchiya, N. Shuto, (eds.), Tsunami: Progress in Prediction, Disaster Prevention and Warning. Advances in Natural and Technological Hazards Research, vol. 4. (Kluwer Academic Press, 1994), pp. 99–115.

    Google Scholar 

  • Mader, C.L., and Curtis, G. (1991), Modeling Hilo, Hawaii tsunami inundation, Sci. Tsunami Hazards 9, 85–94.

    Google Scholar 

  • Okada, Y. (1985), Surface deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am. 75, 1135–1154.

    Google Scholar 

  • Okal, E.A., and Talandier, J. (1989) Mm: A variable-period mantle magnitude, J. Geophys. Res. 94, 4169–4193.

    Article  Google Scholar 

  • Okal, E.A., and Reymond, D. (2003), The mechanism of the great Banda Sea earthquake of 01 February 1938: Applying the method of Preliminary Determination of Focal Mechanism to a historical event, Earth Planet. Sci. Lett. 216, 1–15.

    Article  Google Scholar 

  • Okal, E.A. Borrero, J.C., and Synolakis, C.E. (2004), The earthquake and tsunami of 17 November 1865: Evidence for far-field tsunami hazard from Tonga, Geophys. J. Int. 157, 164–174.

    Article  Google Scholar 

  • Okal, E.A. and Hébert, H. (2007), Far-field modeling of the 1946 Aleutian tsunami, Geophys. J. Int. 169, 1229–1238.

    Article  Google Scholar 

  • Reymond, D., Hyvernaud, O., and Talandier, J. (1991), Automatic detection, location and quantification of earthquakes: Application to Tsunami Warning, Pure Appl. Geophys. 135, 361–382.

    Article  Google Scholar 

  • Reymond, D. and Okal, E.A. (2000), Preliminary determination of focal mechanisms from the inversion of spectral amplitudes of mantle waves, Phys. Earth Planet. Inter. 121, 249–271.

    Article  Google Scholar 

  • Reymond, D. Okal, E.A., Hébert, H., and Loevenbruck, A. (2007), Far-field tsunami amplitude estimations from numerical simulations and empirical laws, Eos Trans. AGU 88 (52), Fall Meet. Suppl., Abstract S53A–1037.

    Google Scholar 

  • Romanovicz, B.A. and Suárez, G. (1983), On an improved method to obtain the moment tensor and depth of earthquakes from the amplitudes spectrum of Rayleigh waves, Bull. Seismd. Soc. Am. 73, 1513–1526.

    Google Scholar 

  • Schindelé, F., Hébert, H., Sladen, A., and Reymond, D. (2006), L’aléa tsunami en Polynésie française: synthése des observations et des mesures, C. R. Geoscience 338, 1133–1140.

    Article  Google Scholar 

  • Schindelé, F., Reymond, D., Gaucher, E., and Okal, E.A. (1995), Analysis and automatic processing in nearfield of the eight 1992–1994 tsunamigenic earthquakes: Improvements in real-time tsunami warning, Pure Appl. Geophys. 144, 381–408.

    Article  Google Scholar 

  • Sladen, A. and Hébert, H. (2008), On the use of satellite altimetry to infer the earthquake rupture characteristics: application to the 2004 Sumatra event, Geophys. J. Int. 172, 707–714.

    Article  Google Scholar 

  • Sladen, A., Hébert, H., Schindelé, F., and Reymond, D. (2007a), Evaluation of far-field tsunami hazard in French Polynesia based on historical data and numerical simulations, Nat. Hazards Earth Syst. Sci. 7, 195–206.

    Article  Google Scholar 

  • Sladen, A., Hébert, H., Schindelé, F., and Reymond, D. (2007b), L’aléa tsunami en Polynésie française: Apports de la simulation numérique, C. R. Geoscience 339, 303–316.

    Article  Google Scholar 

  • Sladen, A., Konca, O., Fielding, E., Perfettini, H., Audin, L., Tavera, H., Avouac, J.-P., Simons, M., and Helmberger, D. (2007c), Source characteristics of the 2007 Pisco earthquake (M w =8.0). Central Peru, EOS Trans. AGU 88 (52), Fall Meet. Suppl., Abstract S13A–1055.

    Google Scholar 

  • Smith, W.H.F., and Sandwell, D.T. (1997), Global seafloor topography from satellite altimetry and ship depth soundings, Science 277, 1956–1962.

    Article  Google Scholar 

  • Talandier, J. and Okal E.A. (1989), An algorithm for automated tsunami warning in French Polynesia, based on mantle magnitudes, Bull. Seismol. Soc. Am. 79, 1177–1193.

    Google Scholar 

  • Tarantola, A. (1987), Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation (Elsevier 1987), 613 pp.

    Google Scholar 

  • Vallée, M., and Bouchon, M. (2004), Imaging coseismic rupture in far field by slip patches, Geophys. J. Int. 156, 615–630.

    Article  Google Scholar 

  • Wei, Y., Bernard, E.N., Tang, L., Weiss R., Titov, V.V., Moore, C., Spillane, M., Hopkins, M., and Kanoglu, U. (2008), Real-time experimental forecast of the Peruvian tsunami of August 2007 for U.S. coastlines Geophys. Res. Lett. 35, L04609, doi: 10.1029/2007GL032250.

    Article  Google Scholar 

  • Wessel, P., and Smith W.H.F. (1998), New, improved version of Generic Mapping Tools released, EOS Trans. AGU, 79 (47), 579. pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag, Basel

About this chapter

Cite this chapter

Hébert, H. et al. (2009). The 15 August 2007 Peru Earthquake and Tsunami: Influence of the Source Characteristics on the Tsunami Heights. In: Cummins, P.R., Satake, K., Kong, L.S.L. (eds) Tsunami Science Four Years after the 2004 Indian Ocean Tsunami. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0064-4_11

Download citation

Publish with us

Policies and ethics