Skip to main content

Tsunami Probability in the Caribbean Region

  • Chapter
  • First Online:
Tsunami Science Four Years after the 2004 Indian Ocean Tsunami

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

We calculated tsunami runup probability (in excess of 0.5 m) at coastal sites throughout the Caribbean region. We applied a Poissonian probability model because of the variety of uncorrelated tsunami sources in the region. Coastlines were discretized into 20 km by 20 km cells, and the mean tsunami runup rate was determined for each cell. The remarkable ~500-year empirical record compiled by O’Loughlin and Lander (2003) was used to calculate an empirical tsunami probability map, the first of three constructed for this study. However, it is unclear whether the 500-year record is complete, so we conducted a seismic moment-balance exercise using a finite-element model of the Caribbean-North American plate boundaries and the earthquake catalog, and found that moment could be balanced if the seismic coupling coefficient is c = 0.32. Modeled moment release was therefore used to generate synthetic earthquake sequences to calculate 50 tsunami runup scenarios for 500-year periods. We made a second probability map from numerically-calculated runup rates in each cell. Differences between the first two probability maps based on empirical and numerical-modeled rates suggest that each captured different aspects of tsunami generation; the empirical model may be deficient in primary plate-boundary events, whereas numerical model rates lack backarc fault and landslide sources. We thus prepared a third probability map using Bayesian likelihood functions derived from the empirical and numerical rate models and their attendant uncertainty to weight a range of rates at each 20 km by 20 km coastal cell. Our best-estimate map gives a range of 30-year runup probability from 0–30% regionally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aida, I. (1969), Numerical experiments for the tsunami propagation-The 1964 Niigata tsunami and the 1968 Tokachi-Oki tsunami, Bull. Earthq. Res. Insti. 47, 673–700.

    Google Scholar 

  • Audemard, F. E. and Audemard, F. A. (2002), Structure of the Mérida Andes, Venezuela: Relations with the South America-Caribbean geodynamic interaction, Tectonophysics 345, 299–327.

    Article  Google Scholar 

  • Bird, P. and Kagan, Y. Y. (2004), Platetectonic analysis of shallow seismicity: Apparent boundary width, beta-value, corner magnitude, coupled lithosphere thickness, and coupling in 7 tectonic settings, Bull. Seismol. Soc. Am. 94, 2380–2399.

    Article  Google Scholar 

  • Cattin, R., Lyon-caen, H., and Chéry, J. (1997), Quantification of interplate coupling in subduction zones and forearc topography, Geophys. Res. Lett. 24, 1563–1566.

    Article  Google Scholar 

  • Cruciani, C., Carminati, E., and Doglioni, C. (2005), Slab dip vs. lithosphere age: No direct function, Earth Planet. Sci. Lett. 238, 298–310.

    Article  Google Scholar 

  • Demets, C., Jansma, P. E., Mattioli, G. S., Dixon, T. H., Farina, F., Bilham, R., Calais, E., and Mann, P. (2000), GPS geodetic constraints on Caribbean-North American plate motion, Geophys. Res. Lett. 27, 437–440.

    Article  Google Scholar 

  • Dixon, T. H., Farina, F., Demets, C., Jansma, P., Mann, P., and Calais, E. (1998), Relative motion between the Caribbean and North American plates and related boundary zone deformation from a decade of GPS observations, J. Geophys. Res. 103, 15157–15182.

    Article  Google Scholar 

  • Geist, E. L. (2002), Complex earthquake rupture and local tsunamis, J. Geophy. Res. 107, doi:10.1029/ 2000JB000139.

    Google Scholar 

  • Geist, E. L. and Parsons, T. (2006), Probabilistic analysis of tsunami hazards, Natural Hazards 37, 277–314.

    Article  Google Scholar 

  • Geist, E. L. and Parsons, T. (2008), Distribution of tsunami inter-event times, Geophys. Res. Lett. 35, doi:10.1029/2007GL032690.

    Google Scholar 

  • Geist, E. L., Parsons, T., Tenbrink, U. S., and Lee, H. J., Tsunami Probability. In The Sea (eds. Bernard, E. N. and Robinson, A. R.) (Harvard University Press, Cambridge, Massachusetts (2008)), in press.

    Google Scholar 

  • Geller, R. J. (1976), Scaling relations for earthquake source parameters and magnitudes, Bull. Seismol. Soc. Am. 66, 1501–1523.

    Google Scholar 

  • Grindlay, N. R., Hearne, M., and Mann, P. (2005), High risk of tsunami in the northern Caribbean, EOS Trans. 86, 121–132.

    Google Scholar 

  • Hanks, T. C. and Kanamori, H. (1979), A moment magnitude scale, J. Geophys. Res. 84, 2348–2350.

    Article  Google Scholar 

  • Herrero, A. and Bernard, P. (1994), A kinematic self-similar rupture process for earthquakes, Bull. Seismol. Soc. Am. 84, 1216–1228.

    Google Scholar 

  • Kagan, Y. Y. (2002a), Seismic moment distribution revisited: I, Statistical Results, Geophys. J. Int. 148, 520–541.

    Article  Google Scholar 

  • Kagan, Y. Y. (2002b), Seismic moment distribution revisited: II, Moment conservation principle, Geophys. J. Int. 149, 731–754.

    Article  Google Scholar 

  • Kagan, Y. Y, and Jackson, D. D. (2000), Probabilistic forecasting of earthquakes, Geophys. J. Int. 143, 438–453.

    Article  Google Scholar 

  • Kopf A., and Brown, K. M. (2003), Friction experiments on saturated sediments and their implications for the stress state of the Nankai and Barbados subduction thrusts, Marine Geology 202, 193–210.

    Article  Google Scholar 

  • Lay, T., Kanamori, H., and Ruff, L. J. (1982), The asperity model and the nature of large subduction zone earthquakes, Earthq. Predict. Res. 1, 3–71.

    Google Scholar 

  • Leroy, S., Mauffret, A., Patriat, P., and Mercier DE Lépinay, B. (2000), An alternative interpretation of the Cayman trough evolution from a reidentification of magnetic anomalies, Geophys. J. Int. 141, 539–557.

    Article  Google Scholar 

  • Mann, P., Rogers, R., and Gahagan, L., Overview of plate tectonic history andits unresolved tectonic problems. In Central America: Geology, Resources, and Hazards vol. 1 (eds. Bundschuh, J. and Alvarado, G. (Taylor and Francis/Balkema, Leiden, The Netherlands 2007), pp. 201–237.

    Google Scholar 

  • Matsuyama, M., Walsh, J. P., and Yeh, H. (1999), The effect of bathymetry on tsunami characteristics at Sissano Lagoon, Papua New Guinea, Geophys. Res. Lett. 26, 3513–3516.

    Article  Google Scholar 

  • McCaffrey, R. (1994), Dependence of earthquake size distributions on convergence rates at subduction zones, Geophys. Res. Lett. 21, 2327–2330.

    Article  Google Scholar 

  • Okada, Y. (1985), Surface deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am. 75, 1135–1154.

    Google Scholar 

  • O’loughlin, K. F. and Lander, J. F., Caribbean Tsuanmis: A 500-Year History from 1498-1998 (Kluwer Academic Publishers, Dordrecht, The Netherlands (2003)).

    Google Scholar 

  • Parsons, T. (2008), Monte Carlo method for determining earthquake recurrence parameters from short paleoseismic catalogs: Example calculations for California, J. Geophys. Res. 112, doi:10.1029/ 2007JB004998.

    Google Scholar 

  • Reid, R. O. and Bodine, B. R. (1968), Numerical model for storm surges in Galveston Bay, J. Waterways and Harbors Div., A.C.E. 94, 33–57.

    Google Scholar 

  • Ruff, L. J., State of stress within the Earth In International Handbook of Earthquake and Engineering Seismology, 81A (eds. Lee, W. H. K., Kanimori, H., Jpennings, P. C., and Kisslinger, C.) (Academic Press, Amsterdam (2002)) pp. 539–557.

    Chapter  Google Scholar 

  • Satake, K. (1995), Linear and nonlinear computations of the 1992 Nicaragua earthquake tsunami, Pure Appli. Geophys., 144, 455–470.

    Article  Google Scholar 

  • Satake, K., Tsunamis. In International Handbook of Earthquake and Engineering Seismology, 81A (eds. Lee, W. H. K., Kanimori, H., Jennings, P. C., and Kisslinger, C. (Academic Press, Amsterdam 2002) pp. 437–451.

    Chapter  Google Scholar 

  • Shepherd, J.B., Seismic hazard in the eastern Caribbean. In The Practice of Earthquake Hazard Assessment (ed. McGuire, R.K.) (IASPEI, Denver (1993)) pp. 51–55.

    Google Scholar 

  • Shuto, N. (1991), Numerical simulation of tsunamis-Its present and near future, Natural Hazards 4, 171–191.

    Article  Google Scholar 

  • Smith, W. H. F. and Sandwell, D. T. (1997), Global seafloor topography from satellite altimetry and ship depth soundings, Science 277, 1957–1962.

    Google Scholar 

  • Tanioka, Y. and Satake, K. (1996), Tsunami generation by horizontal displacement of ocean bottom, Geophys. Res. Lett. 23, 861–865.

    Article  Google Scholar 

  • Tenbrink, U. S. and Lin, J. (2004), Stress interaction between subduction earthquakes and forearc strike-slip faults: Modeling and application to the northern Caribbean plate boundary, J. Geophys. Res. 109, doi: 12310.11029/12004JB003031.

    Google Scholar 

  • Titov, V. V. and Synolakis, C. E. (1997), Extreme inundation flows during the Hokkaido-Nansei-Oki tsunami, Geophys. Res. Lett. 24, 1315–1318.

    Article  Google Scholar 

  • Tsai, C. P. (1997), Slip, stress drop and ground motion of earthquakes: A view from the perspective of fractional Brownian motion, Pure Appli. Geophys. 149, 689–706.

    Article  Google Scholar 

  • Wells, D. L., and Coppersmith, K. J. (1994), New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seismol. Soc. Am. 84, 974–1002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag, Basel

About this chapter

Cite this chapter

Parsons, T., Geist, E.L. (2008). Tsunami Probability in the Caribbean Region. In: Cummins, P.R., Satake, K., Kong, L.S.L. (eds) Tsunami Science Four Years after the 2004 Indian Ocean Tsunami. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0057-6_7

Download citation

Publish with us

Policies and ethics