Skip to main content

Temporal Performance Prediction for Deep Convolutional Long Short-Term Memory Networks

  • Conference paper
  • First Online:
Advanced Analytics and Learning on Temporal Data (AALTD 2023)

Abstract

Quantifying predictive uncertainty of deep semantic segmentation networks is essential in safety-critical tasks. In applications like autonomous driving, where video data is available, convolutional long short-term memory networks are capable of not only providing semantic segmentations but also predicting the segmentations of the next timesteps. These models use cell states to broadcast information from previous data by taking a time series of inputs to predict one or even further steps into the future. We present a temporal postprocessing method which estimates the prediction performance of convolutional long short-term memory networks by either predicting the intersection over union of predicted and ground truth segments or classifying between intersection over union being equal to zero or greater than zero. To this end, we create temporal cell state-based input metrics per segment and investigate different models for the estimation of the predictive quality based on these metrics. We further study the influence of the number of considered cell states for the proposed metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babenko, B., Yang, M.H., Belongie, S.: Visual tracking with online multiple instance learning. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 983–990 (2009). https://doi.org/10.1109/CVPR.2009.5206737

  2. Belagiannis, V., Schubert, F., Navab, N., Ilic, S.: Segmentation based particle filtering for real-time 2D object tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 842–855. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_60

    Chapter  Google Scholar 

  3. Bergmann, P., Meinhardt, T., Leal-Taixé, L.: Tracking without bells and whistles. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 941–951 (2019). https://doi.org/10.1109/ICCV.2019.00103

  4. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural network. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 1613–1622. PMLR (2015). https://proceedings.mlr.press/v37/blundell15.html

  5. Duvenaud, D., Maclaurin, D., Adams, R.: Early stopping as nonparametric variational inference. In: Gretton, A., Robert, C.C. (eds.) Proceedings of the 19th International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 51, pp. 1070–1077. PMLR (2016). https://proceedings.mlr.press/v51/duvenaud16.html

  6. Erdem, C.E., Sankur, B., Tekalp, A.M.: Performance measures for video object segmentation and tracking. IEEE Trans. Image Process. 13(7), 937–951 (2004). https://doi.org/10.1109/TIP.2004.828427

    Article  Google Scholar 

  7. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: Balcan, M.F., Weinberger, K.Q. (eds.) Proceedings of The 33rd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 48, pp. 1050–1059. PMLR (2016). https://proceedings.mlr.press/v48/gal16.html

  8. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 1321–1330. PMLR (2017). https://proceedings.mlr.press/v70/guo17a.html

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  10. Hornauer, J., Belagiannis, V.: Gradient-based uncertainty for monocular depth estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision, ECCV 2022. LNCS, vol. 13680, pp. 613–630. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20044-1_35

  11. Huang, P.-Y., Hsu, W.-T., Chiu, C.-Y., Wu, T.-F., Sun, M.: Efficient uncertainty estimation for semantic segmentation in videos. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 536–552. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_32

    Chapter  Google Scholar 

  12. Hurtado, J.V., Mohan, R., Burgard, W., Valada, A.: MOPT: multi-object panoptic tracking. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Scalability in Autonomous Driving (2020)

    Google Scholar 

  13. Jaccard, P.: The distribution of the flora in the alpine zone. New Phytol. 11, 37–50 (1912)

    Article  Google Scholar 

  14. Kim, D., Woo, S., Lee, J.Y., Kweon, I.S.: Video panoptic segmentation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9856–9865 (2020). https://doi.org/10.1109/CVPR42600.2020.00988

  15. Kull, M., Perello Nieto, M., Kängsepp, M., Silva Filho, T., Song, H., Flach, P.: Beyond temperature scaling: obtaining well-calibrated multi-class probabilities with dirichlet calibration. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F.d., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019). https://proceedings.neurips.cc/paper_files/paper/2019/file/8ca01ea920679a0fe3728441494041b9-Paper.pdf

  16. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf

  17. Maag, K., Rottmann, M., Gottschalk, H.: Time-dynamic estimates of the reliability of deep semantic segmentation networks. In: 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), pp. 502–509 (2020). https://doi.org/10.1109/ICTAI50040.2020.00084

  18. MacKay, D.J.C.: A practical Bayesian framework for backpropagation networks. Neural Comput. 4(3), 448–472 (1992). https://doi.org/10.1162/neco.1992.4.3.448

    Article  Google Scholar 

  19. Minderer, M., et al.: Revisiting the calibration of modern neural networks. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems, vol. 34, pp. 15682–15694. Curran Associates, Inc. (2021). https://proceedings.neurips.cc/paper_files/paper/2021/file/8420d359404024567b5aefda1231af24-Paper.pdf

  20. Peng, J., et al.: Chained-tracker: chaining paired attentive regression results for end-to-end joint multiple-object detection and tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 145–161. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_9

    Chapter  Google Scholar 

  21. Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2232–2241 (2017). https://doi.org/10.1109/ICCV.2017.243

  22. Riedlinger, T., Rottmann, M., Schubert, M., Gottschalk, H.: Gradient-based quantification of epistemic uncertainty for deep object detectors. In: 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 3910–3920 (2023). https://doi.org/10.1109/WACV56688.2023.00391

  23. Rottmann, M., et al.: Prediction error meta classification in semantic segmentation: detection via aggregated dispersion measures of softmax probabilities. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–9 (2020). https://doi.org/10.1109/IJCNN48605.2020.9206659

  24. Rottmann, M., Reese, M.: Automated detection of label errors in semantic segmentation datasets via deep learning and uncertainty quantification. In: 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 3213–3222 (2023). https://doi.org/10.1109/WACV56688.2023.00323

  25. Rottmann, M., Schubert, M.: Uncertainty measures and prediction quality rating for the semantic segmentation of nested multi resolution street scene images. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1361–1369 (2019). https://doi.org/10.1109/CVPRW.2019.00176

  26. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W., Woo, W.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Proceedings of the 28th International Conference on Neural Information Processing Systems, NIPS 2015, vol. 1, pp. 802–810. MIT Press (2015)

    Google Scholar 

  27. Wang, Q., Zhang, L., Bertinetto, L., Hu, W., Torr, P.H.: Fast online object tracking and segmentation: a unifying approach. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1328–1338 (2019). https://doi.org/10.1109/CVPR.2019.00142

  28. Wickstrøm, K., Kampffmeyer, M., Jenssen, R.: Uncertainty modeling and interpretability in convolutional neural networks for polyp segmentation. In: 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6 (2018). https://doi.org/10.1109/MLSP.2018.8516998

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Fieback .

Editor information

Editors and Affiliations

Ethics declarations

Disclaimer

The results, opinions and conclusions expressed in this publication are not necessarily those of Volkswagen Aktiengesellschaft.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fieback, L., Dash, B., Spiegelberg, J., Gottschalk, H. (2023). Temporal Performance Prediction for Deep Convolutional Long Short-Term Memory Networks. In: Ifrim, G., et al. Advanced Analytics and Learning on Temporal Data. AALTD 2023. Lecture Notes in Computer Science(), vol 14343. Springer, Cham. https://doi.org/10.1007/978-3-031-49896-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49896-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49895-4

  • Online ISBN: 978-3-031-49896-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics