Skip to main content

A New Class of Explanations for Classifiers with Non-binary Features

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2023)

Abstract

Two types of explanations have been receiving increased attention in the literature when analyzing the decisions made by classifiers. The first type explains why a decision was made and is known as a sufficient reason for the decision, also an abductive explanation or a PI-explanation. The second type explains why some other decision was not made and is known as a necessary reason for the decision, also a contrastive or counterfactual explanation. These explanations were defined for classifiers with binary, discrete and, in some cases, continuous features. We show that these explanations can be significantly improved in the presence of non-binary features, leading to a new class of explanations that relay more information about decisions and the underlying classifiers. Necessary and sufficient reasons were also shown to be the prime implicates and implicants of the complete reason for a decision, which can be obtained using a quantification operator. We show that our improved notions of necessary and sufficient reasons are also prime implicates and implicants but for an improved notion of complete reason obtained by a new quantification operator that we also define and study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We will use sufficient reasons and PI/abductive explanations interchangeably.

  2. 2.

    See, e.g., [13, 44, 49] for some approaches that can be viewed as approximating sufficient reasons and [26] for a study of the quality of some of these approximations.

  3. 3.

    We will use necessary reasons and contrastive explanations interchangeably in this paper. Counterfactual explanations are related but have alternate definitions in the literature. For example, as defined in [5], they correspond to length-minimal necessary reasons; see [18]. But according to some other definitions, they include contrastive explanations (necessary reasons) as a special case; see Sect. 5.2 in [34]. See also [1] for counterfactual explanations that are directed towards Bayesian network classifiers and [2] for a relevant recent study and survey.

  4. 4.

    Interestingly, the axiomatic study of explanations in [3] allows non-binary features, yet Axiom 4 (feasibility) implies that explanations must be simple.

  5. 5.

    For example, we can use it to provide forgetting semantics for the dual operator \(\overline{\exists }\,x_i \cdot \varDelta = \overline{\overline{\forall }\,x_i \cdot \overline{\varDelta }}\). Using Definition 2, we get \(\overline{\exists }\,x_i \cdot \varDelta = \varDelta +\varDelta | x_i\). Using Proposition 4, we get \(\overline{\exists }\,x_i \cdot \varDelta = \varDelta | x_i +\sum _{j \not = i} (x_j \cdot \varDelta | x_j)\). We can now easily show that (1) \(\varDelta \models \overline{\exists }\,x_i \cdot \varDelta \) and (2) \(\overline{\exists }\,x_i \cdot \varDelta \) is equivalent to an NNF whose X-literals do not mention state \(x_i\). That is, \(\overline{\exists }\,x_i\) can be understood as forgetting the information about state \(x_i\) from \(\varDelta \). This is similar to the dual operator \(\exists x_i \cdot \varDelta = \overline{\forall x_i \cdot \overline{\varDelta }}\) studied in [19, 32] except that \(\overline{\exists }\,x_i\) erases less information from \(\varDelta \) since one can show that \(\varDelta \models \overline{\exists }\,x_i \cdot \varDelta \models \exists x_i \cdot \varDelta \).

  6. 6.

    Unlike SRs, two GSRs may mention the same set of variables. Consider the class formula \(\varDelta = (x_1 \cdot y_{12}) +(x_{12} \cdot y_1)\) and instance \(\mathcal{I}= x_1 \cdot y_1\). There are two GSRs for the decision on \(\mathcal{I}\), \(x_1 \cdot y_{12}\) and \(x_{12} \cdot y_1\), and both mention the same variables XY.

  7. 7.

    A dual notion, contrastive path explanation (CPXp), was also proposed in [27].

  8. 8.

    An NNF circuit is a DAG whose leaves are labeled with \(\bot , \top \), or literals; and whose internal nodes are labelled with \(\cdot \) or \(+\).

  9. 9.

    The condition \(V \cap (vars(\tau ) \setminus vars(\tau ')) \ne \emptyset \) is trivially satisfied when \(\varDelta \) is the root of the NNF circuit since V will include all circuit variables in this case.

  10. 10.

    The number of clauses in this CNF will be no more than the number of NNF nodes if the NNF is the general reason of a decision tree (i.e., the NNF has a tree structure).

References

  1. Albini, E., Rago, A., Baroni, P., Toni, F.: Relation-based counterfactual explanations for Bayesian network classifiers. In: IJCAI, pp. 451–457 (2020). https://www.ijcai.org/

  2. Amgoud, L.: Explaining black-box classifiers: properties and functions. Int. J. Approx. Reason. 155, 40–65 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amgoud, L., Ben-Naim, J.: Axiomatic foundations of explainability. In: IJCAI, pp. 636–642 (2022). https://www.ijcai.org/

  4. Audemard, G., Bellart, S., Bounia, L., Koriche, F., Lagniez, J., Marquis, P.: On the explanatory power of Boolean decision trees. Data Knowl. Eng. 142, 102088 (2022)

    Article  Google Scholar 

  5. Audemard, G., Koriche, F., Marquis, P.: On tractable XAI queries based on compiled representations. In: KR, pp. 838–849 (2020)

    Google Scholar 

  6. Audemard, G., Lagniez, J., Marquis, P., Szczepanski, N.: Computing abductive explanations for boosted trees. CoRR abs/2209.07740 (2022)

    Google Scholar 

  7. Belson, W.A.: Matching and prediction on the principle of biological classification. J. R. Stat. Soc. Ser. C (Appl. Stat.) 8(2), 65–75 (1959). https://www.jstor.org/stable/2985543

  8. Boumazouza, R., Alili, F.C., Mazure, B., Tabia, K.: ASTERYX: a model-agnostic sat-based approach for symbolic and score-based explanations. In: CIKM, pp. 120–129. ACM (2021)

    Google Scholar 

  9. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth (1984)

    Google Scholar 

  10. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. 35(8), 677–691 (1986)

    Article  MATH  Google Scholar 

  11. Chan, H., Darwiche, A.: Reasoning about Bayesian network classifiers. In: UAI, pp. 107–115. Morgan Kaufmann (2003)

    Google Scholar 

  12. Choi, A., Shih, A., Goyanka, A., Darwiche, A.: On symbolically encoding the behavior of random forests. CoRR abs/2007.01493 (2020)

    Google Scholar 

  13. Choi, A., Xue, Y., Darwiche, A.: Same-decision probability: a confidence measure for threshold-based decisions. Int. J. Approx. Reason. 53(9), 1415–1428 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. de Colnet, A., Marquis, P.: On the complexity of enumerating prime implicants from decision-DNNF circuits. In: IJCAI, pp. 2583–2590 (2022). https://www.ijcai.org/

  15. Crama, Y., Hammer, P.L.: Boolean functions - theory, algorithms, and applications. In: Encyclopedia of Mathematics and Its Applications (2011)

    Google Scholar 

  16. Darwiche, A.: Logic for explainable AI. In: 38th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS, pp. 1–11. IEEE (2023). CoRR abs/2305.05172

    Google Scholar 

  17. Darwiche, A., Hirth, A.: On the reasons behind decisions. In: ECAI. Frontiers in Artificial Intelligence and Applications, vol. 325, pp. 712–720. IOS Press (2020)

    Google Scholar 

  18. Darwiche, A., Ji, C.: On the computation of necessary and sufficient explanations. In: AAAI, pp. 5582–5591. AAAI Press (2022)

    Google Scholar 

  19. Darwiche, A., Marquis, P.: On quantifying literals in Boolean logic and its applications to explainable AI. J. Artif. Intell. Res. 72, 285–328 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gurvich, V., Khachiyan, L.: On generating the irredundant conjunctive and disjunctive normal forms of monotone Boolean functions. Discrete Appl. Math. 96, 363–373 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang, X., Izza, Y., Ignatiev, A., Cooper, M.C., Asher, N., Marques-Silva, J.: Efficient explanations for knowledge compilation languages. CoRR abs/2107.01654 (2021)

    Google Scholar 

  22. Huang, X., Izza, Y., Ignatiev, A., Marques-Silva, J.: On efficiently explaining graph-based classifiers. In: KR, pp. 356–367 (2021)

    Google Scholar 

  23. Ignatiev, A., Izza, Y., Stuckey, P.J., Marques-Silva, J.: Using MaxSAT for efficient explanations of tree ensembles. In: AAAI, pp. 3776–3785. AAAI Press (2022)

    Google Scholar 

  24. Ignatiev, A., Narodytska, N., Asher, N., Marques-Silva, J.: From contrastive to abductive explanations and back again. In: Baldoni, M., Bandini, S. (eds.) AIxIA 2020. LNCS (LNAI), vol. 12414, pp. 335–355. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77091-4_21

    Chapter  Google Scholar 

  25. Ignatiev, A., Narodytska, N., Marques-Silva, J.: Abduction-based explanations for machine learning models. In: Proceedings of the Thirty-Third Conference on Artificial Intelligence (AAAI), pp. 1511–1519 (2019)

    Google Scholar 

  26. Ignatiev, A., Narodytska, N., Marques-Silva, J.: On validating, repairing and refining heuristic ML explanations. CoRR abs/1907.02509 (2019)

    Google Scholar 

  27. Izza, Y., Ignatiev, A., Marques-Silva, J.: On tackling explanation redundancy in decision trees. J. Artif. Intell. Res. 75, 261–321 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  28. Izza, Y., Marques-Silva, J.: On explaining random forests with SAT. In: IJCAI, pp. 2584–2591 (2021). https://www.ijcai.org/

  29. Jackson, P.: Computing prime implicates. In: Proceedings of the 1992 ACM Annual Conference on Communications, CSC 1992, pp. 65–72. Association for Computing Machinery, New York, NY, USA (1992). https://doi.org/10.1145/131214.131223

  30. Ji, C., Darwiche, A.: A new class of explanations for classifiers with non-binary features. CoRR abs/2304.14760 (2023)

    Google Scholar 

  31. Kean, A., Tsiknis, G.: An incremental method for generating prime implicants/implicates. J. Symbolic Comput. 9(2), 185–206 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lang, J., Liberatore, P., Marquis, P.: Propositional independence: formula-variable independence and forgetting. J. Artif. Intell. Res. 18, 391–443 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lipton, P.: Contrastive explanation. Roy. Inst. Philos. Suppl. 27, 247–266 (1990). https://doi.org/10.1017/S1358246100005130

    Article  Google Scholar 

  34. Liu, X., Lorini, E.: A unified logical framework for explanations in classifier systems. J. Log. Comput. 33(2), 485–515 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  35. Luo, W., Want, H., Zhong, H., Wei, O., Fang, B., Song, X.: An efficient two-phase method for prime compilation of non-clausal Boolean formulae. In: 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD), pp. 1–9 (2021). https://doi.org/10.1109/ICCAD51958.2021.9643520

  36. Marques-Silva, J., Gerspacher, T., Cooper, M.C., Ignatiev, A., Narodytska, N.: Explanations for monotonic classifiers. In: ICML. Proceedings of Machine Learning Research, vol. 139, pp. 7469–7479. PMLR (2021)

    Google Scholar 

  37. Marques-Silva, J., Ignatiev, A.: Delivering trustworthy AI through formal XAI. In: AAAI, pp. 12342–12350. AAAI Press (2022)

    Google Scholar 

  38. Marquis, P.: Consequence finding algorithms. In: Kohlas, J., Moral, S. (eds.) Handbook of defeasible reasoning and uncertainty management systems, pp. 41–145. Springer, Cham (2000). https://doi.org/10.1007/978-94-017-1737-3_3

    Chapter  Google Scholar 

  39. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Narodytska, N., Kasiviswanathan, S.P., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying properties of binarized deep neural networks. In: Proceedings of AAAI 2018, pp. 6615–6624 (2018)

    Google Scholar 

  41. Previti, A., Ignatiev, A., Morgado, A., Marques-Silva, J.: Prime compilation of non-clausal formulae. In: IJCAI, pp. 1980–1988. AAAI Press (2015)

    Google Scholar 

  42. Ramesh, A., Becker, G., Murray, N.V.: CNF and DNF considered harmful for computing prime implicants/implicates. J. Autom. Reason. 18(3), 337–356 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the predictions of any classifier. In: KDD, pp. 1135–1144. ACM (2016)

    Google Scholar 

  44. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic explanations. In: AAAI, pp. 1527–1535. AAAI Press (2018)

    Google Scholar 

  45. Shi, W., Shih, A., Darwiche, A., Choi, A.: On tractable representations of binary neural networks. In: KR, pp. 882–892 (2020)

    Google Scholar 

  46. Shih, A., Choi, A., Darwiche, A.: A symbolic approach to explaining Bayesian network classifiers. In: IJCAI, pp. 5103–5111 (2018). https://www.ijcai.org/

  47. Shih, A., Choi, A., Darwiche, A.: Compiling Bayesian network classifiers into decision graphs. In: AAAI, pp. 7966–7974. AAAI Press (2019)

    Google Scholar 

  48. Slagle, J., Chang, C.L., Lee, R.: A new algorithm for generating prime implicants. IEEE Trans. Comput. C- 19(4), 304–310 (1970). https://doi.org/10.1109/T-C.1970.222917

    Article  MathSciNet  MATH  Google Scholar 

  49. Wang, E., Khosravi, P., den Broeck, G.V.: Probabilistic sufficient explanations. In: IJCAI, pp. 3082–3088 (2021). https://www.ijcai.org/

Download references

Acknowledgments

This work has been partially supported by NSF grant ISS-1910317.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxi Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ji, C., Darwiche, A. (2023). A New Class of Explanations for Classifiers with Non-binary Features. In: Gaggl, S., Martinez, M.V., Ortiz, M. (eds) Logics in Artificial Intelligence. JELIA 2023. Lecture Notes in Computer Science(), vol 14281. Springer, Cham. https://doi.org/10.1007/978-3-031-43619-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43619-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43618-5

  • Online ISBN: 978-3-031-43619-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics