Skip to main content

Computing Stable Extensions of Argumentation Frameworks using Formal Concept Analysis

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2023)

Abstract

We propose an approach based on Formal Concept Analysis (FCA) for computing stable extensions of Abstract Argumentation Frameworks (AFs). To this purpose, we represent an AF as a formal context in which stable extensions of the AF are closed sets called concept intents. We make use of algorithms developed in FCA for computing concept intents in order to compute stable extensions of AFs. Experimental results show that, on AFs with a high density of the attack relation, our algorithms perform significantly better than the existing approaches. The algorithms can be modified to compute other types of extensions, in particular, preferred extensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The test frameworks are available via the GitHub Repository of the project.

  2. 2.

    https://github.com/sertkaya/afca.

  3. 3.

    https://bitbucket.org/andreasniskanen/mu-toksia/src/master/.

  4. 4.

    https://alviano.com/software/pyglaf.

  5. 5.

    https://github.com/gorczyca/dp_on_dbs.

References

  1. Alviano, M.: The PYGLAF argumentation reasoner (ICCMA2021). CoRR abs/2109.03162 (2021). https://arxiv.org/abs/2109.03162

  2. Amgoud, L., Prade, H.: A formal concept view of abstract argumentation. In: van der Gaag, L.C. (ed.) ECSQARU 2013. LNCS (LNAI), vol. 7958, pp. 1–12. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39091-3_1

    Chapter  Google Scholar 

  3. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics. Knowl. Eng. Rev. 26(4), 365–410 (2011). https://doi.org/10.1017/S0269888911000166

    Article  Google Scholar 

  4. Baroni, P., Dunne, P.E., Giacomin, M.: On extension counting problems in argumentation frameworks. In: Baroni, P., Cerutti, F., Giacomin, M., Simari, G.R. (eds.) Computational Models of Argument: Proceedings of COMMA 2010, Desenzano del Garda, Italy, 8–10, September 2010. Frontiers in Artificial Intelligence and Applications, vol. 216, pp. 63–74. IOS Press (2010). https://doi.org/10.3233/978-1-60750-619-5-63

  5. Bistarelli, S., Santini, F.: ConArg: a constraint-based computational framework for argumentation systems. In: IEEE 23rd International Conference on Tools with Artificial Intelligence, ICTAI 2011, Boca Raton, FL, USA, 7–9 November 2011, pp. 605–612. IEEE Computer Society (2011). https://doi.org/10.1109/ICTAI.2011.96

  6. Borchman, D., Hanika, T., Obiedkov, S.: Probably approximately correct learning of Horn envelopes from queries. Discret. Appl. Math. 273, 30–42 (2020). https://doi.org/10.1016/j.dam.2019.02.036

    Article  MathSciNet  MATH  Google Scholar 

  7. Bordat, J.P.: Calcul pratique du treillis de Galois d’ une correspondance. Mathématiques, Informatique et Sciences Humaines 96, 31–47 (1986)

    MathSciNet  MATH  Google Scholar 

  8. Cerutti, F., Gaggl, S.A., Thimm, M., Wallner, J.P.: Foundations of implementations for formal argumentation. FLAP 4(8), 2623–2705 (2017). http://www.collegepublications.co.uk/downloads/ifcolog00017.pdf

  9. Cimiano, P., Hotho, A., Staab, S.: Learning concept hierarchies from text corpora using formal concept analysis. J. Artif. Intell. Res. 24(1), 305–339 (2005)

    Article  MATH  Google Scholar 

  10. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995). https://doi.org/10.1016/0004-3702(94)00041-X

  11. Dunne, P.E., Wooldridge, M.J.: Complexity of abstract argumentation. In: Simari, G.R., Rahwan, I. (eds.) Argumentation in Artificial Intelligence, pp. 85–104. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-98197-0_5

  12. Ganter, B.: Two basic algorithms in concept analysis. Technical report Preprint-Nr. 831, Technische Hochschule Darmstadt, Darmstadt, Germany (1984)

    Google Scholar 

  13. Ganter, B.: Two basic algorithms in concept analysis. In: Kwuida, L., Sertkaya, B. (eds.) ICFCA 2010. LNCS (LNAI), vol. 5986, pp. 312–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11928-6_22

    Chapter  MATH  Google Scholar 

  14. Ganter, B., Obiedkov, S.: Conceptual Exploration. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49291-8

    Book  MATH  Google Scholar 

  15. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

    Book  MATH  Google Scholar 

  16. Geilen, N., Thimm, M.: Heureka: a general heuristic backtracking solver for abstract argumentation. In: Black, E., Modgil, S., Oren, N. (eds.) TAFA 2017. LNCS (LNAI), vol. 10757, pp. 143–149. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75553-3_10

    Chapter  Google Scholar 

  17. Godin, R., Missaoui, R., Alaoui, H.: Incremental concept formation algorithms based on Galois (concept) lattices. Comput. Intell. 11(2), 246–267 (1995)

    Article  Google Scholar 

  18. Grissa, D., Comte, B., Pétéra, M., Pujos-Guillot, E., Napoli, A.: A hybrid and exploratory approach to knowledge discovery in metabolomic data. Discrete Appl. Math. 273, 103–116 (2020). https://doi.org/10.1016/j.dam.2018.11.025. Advances in Formal Concept Analysis: Traces of CLA 2016

  19. Ignatov, D.I.: Introduction to formal concept analysis and its applications in information retrieval and related fields. CoRR abs/1703.02819 (2017). http://arxiv.org/abs/1703.02819

  20. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Inf. Process. Lett. 27(3), 119–123 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kröll, M., Pichler, R., Woltran, S.: On the complexity of enumerating the extensions of abstract argumentation frameworks. In: Sierra, C. (ed.) Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, 19–25 August 2017, pp. 1145–1152. ijcai.org (2017). https://doi.org/10.24963/ijcai.2017/159

  22. Kuznetsov, S.O.: A fast algorithm for computing all intersections of objects in a finite semi-lattice. Autom. Documentation Math. Linguist. 27(5), 11–21 (1993)

    Google Scholar 

  23. Kuznetsov, S.O.: On computing the size of a lattice and related decision problems. Order 18(4), 313–321 (2001). https://doi.org/10.1023/A:1013970520933

    Article  MathSciNet  MATH  Google Scholar 

  24. Kuznetsov, S.O.: Machine learning and formal concept analysis. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 287–312. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24651-0_25

    Chapter  MATH  Google Scholar 

  25. Kuznetsov, S.O., Obiedkov, S.: Comparing performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Intell. 14(2–3), 189–216 (2002)

    Article  MATH  Google Scholar 

  26. Lakhal, L., Stumme, G.: Efficient mining of association rules based on formal concept analysis. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 180–195. Springer, Heidelberg (2005). https://doi.org/10.1007/11528784_10

    Chapter  MATH  Google Scholar 

  27. Niskanen, A., Järvisalo, M.: \(\rm \mu \)-toksia: an efficient abstract argumentation reasoner. In: Calvanese, D., Erdem, E., Thielscher, M. (eds.) Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning, KR 2020, Rhodes, Greece, 12–18 September 2020, pp. 800–804 (2020). https://doi.org/10.24963/kr.2020/82

  28. Norris, E.M.: An algorithm for computing the maximal rectangles in a binary relation. Rev. Roumaine Math. Pures Appl. 23(2), 243–250 (1978)

    MathSciNet  MATH  Google Scholar 

  29. Nourine, L., Raynaud, O.: A fast algorithm for building lattices. Inf. Process. Lett. 71(5–6), 199–204 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Obiedkov, S.: Learning implications from data and from queries. In: Cristea, D., Le Ber, F., Sertkaya, B. (eds.) ICFCA 2019. LNCS (LNAI), vol. 11511, pp. 32–44. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21462-3_3

    Chapter  Google Scholar 

  31. Poelmans, J., Ignatov, D.I., Kuznetsov, S.O., Dedene, G.: Formal concept analysis in knowledge processing: a survey on applications. Expert Syst. Appl. 40(16), 6538–6560 (2013)

    Article  Google Scholar 

  32. Valtchev, P., Missaoui, R.: Building concept (Galois) lattices from parts: generalizing the incremental methods. In: Delugach, H.S., Stumme, G. (eds.) ICCS-ConceptStruct 2001. LNCS (LNAI), vol. 2120, pp. 290–303. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44583-8_21

    Chapter  MATH  Google Scholar 

Download references

Acknowledgements

This work is partly supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) in project 389792660 (TRR 248, Centerfor Perspicuous Systems), by the Bundesministerium für Bildung und Forschung (BMBF, Federal Ministry of Education and Research) in the Center for Scalable DataAnalytics and Artificial Intelligence (ScaDS.AI), and by BMBF and DAAD (German Academic Exchange Service) in project 57616814 (SECAI, School of Embedded Composite AI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Obiedkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Obiedkov, S., Sertkaya, B. (2023). Computing Stable Extensions of Argumentation Frameworks using Formal Concept Analysis. In: Gaggl, S., Martinez, M.V., Ortiz, M. (eds) Logics in Artificial Intelligence. JELIA 2023. Lecture Notes in Computer Science(), vol 14281. Springer, Cham. https://doi.org/10.1007/978-3-031-43619-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43619-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43618-5

  • Online ISBN: 978-3-031-43619-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics