Skip to main content

Generative Datalog and Answer Set Programming – Extended Abstract

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14281))

Included in the following conference series:

  • 383 Accesses

Abstract

Generative Datalog is an extension of Datalog that incorporates constructs for referencing parameterized probability distributions. This augmentation transforms the evaluation of a Generative Datalog program into a stochastic process, resulting in a declarative formalism suitable for modeling and analyzing other stochastic processes. This work provides an introduction to Generative Datalog through the lens of Answer Set Programming (ASP), demonstrating how Generative Datalog can explain the output of ASP systems that include @-terms referencing probability distributions. From a theoretical point of view, extending the semantics of Generative Datalog to stable negation proved to be challenging due to the richness of ASP relative to Datalog in terms of linguistic constructs. On a more pragmatic side, the connection between the two formalisms lays the foundation for implementing Generative Datalog atop efficient ASP systems, making it a practical solution for real-world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alviano, M., et al.: The ASP system DLV2. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS (LNAI), vol. 10377, pp. 215–221. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61660-5_19

    Chapter  Google Scholar 

  2. Alviano, M., Lanzinger, M., Morak, M., Pieris, A.: Generative datalog with stable negation. In: PODS. ACM (2023). https://arxiv.org/abs/2206.12247

  3. Baral, C., Gelfond, M., Rushton, J.N.: Probabilistic reasoning with answer sets. Theory Pract. Log. Program. 9(1), 57–144 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bárány, V., ten Cate, B., Kimelfeld, B., Olteanu, D., Vagena, Z.: Declarative probabilistic programming with datalog. In: ICDT. LIPIcs, vol. 48, pp. 7:1–7:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)

    Google Scholar 

  5. Bárány, V., ten Cate, B., Kimelfeld, B., Olteanu, D., Vagena, Z.: Declarative probabilistic programming with datalog. ACM Trans. Database Syst. 42(4), 22:1–22:35 (2017)

    Google Scholar 

  6. Santos Costa, V., Page, D., Cussens, J.: CLP(\(\cal{BN}\)): constraint logic programming for probabilistic knowledge. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.) Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911, pp. 156–188. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78652-8_6

    Chapter  MATH  Google Scholar 

  7. Cozman, F.G., Mauá, D.D.: The joy of probabilistic answer set programming: semantics, complexity, expressivity, inference. Int. J. Approx. Reason. 125, 218–239 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Domingos, P.M., Lowd, D.: Markov Logic: An Interface Layer for Artificial Intelligence. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers (2009)

    Google Scholar 

  9. Fierens, D., et al.: Inference and learning in probabilistic logic programs using weighted Boolean formulas. Theory Pract. Log. Program. 15(3), 358–401 (2015)

    Google Scholar 

  10. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with clingo. Theory Pract. Log. Program. 19(1), 27–82 (2019). https://doi.org/10.1017/S1471068418000054

    Article  MathSciNet  MATH  Google Scholar 

  11. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.: Potassco: the Potsdam answer set solving collection. AI Commun. 24(2), 107–124 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9(3/4), 365–386 (1991)

    Article  MATH  Google Scholar 

  13. Goodman, N.D.: The principles and practice of probabilistic programming. In: POPL, pp. 399–402. ACM (2013)

    Google Scholar 

  14. Grohe, M., Kaminski, B.L., Katoen, J., Lindner, P.: Generative datalog with continuous distributions. In: PODS, pp. 347–360. ACM (2020)

    Google Scholar 

  15. Gutmann, B., Jaeger, M., De Raedt, L.: Extending ProbLog with continuous distributions. In: Frasconi, P., Lisi, F.A. (eds.) ILP 2010. LNCS (LNAI), vol. 6489, pp. 76–91. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21295-6_12

    Chapter  Google Scholar 

  16. Gutmann, B., Thon, I., Kimmig, A., Bruynooghe, M., Raedt, L.D.: The magic of logical inference in probabilistic programming. Theory Pract. Log. Program. 11(4–5), 663–680 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jones, C., Plotkin, G.D.: A probabilistic powerdomain of evaluations. In: LICS, pp. 186–195. IEEE Computer Society (1989)

    Google Scholar 

  18. Kimelfeld, B., Senellart, P.: Probabilistic XML: models and complexity. In: Ma, Z., Yan, L. (eds.) Advances in Probabilistic Databases for Uncertain Information Management. Studies in Fuzziness and Soft Computing, vol. 304, pp. 39–66. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37509-5_3

    Chapter  Google Scholar 

  19. Lee, J., Talsania, S., Wang, Y.: Computing LPMLN using ASP and MLN solvers. Theory Pract. Log. Program. 17(5–6), 942–960 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nitti, D., Laet, T.D., Raedt, L.D.: Probabilistic logic programming for hybrid relational domains. Mach. Learn. 103(3), 407–449 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Niu, F., Ré, C., Doan, A., Shavlik, J.W.: Tuffy: scaling up statistical inference in Markov logic networks using an RDBMS. Proc. VLDB Endow. 4(6), 373–384 (2011)

    Article  Google Scholar 

  22. Niu, F., Zhang, C., Ré, C., Shavlik, J.W.: DeepDive: web-scale knowledge-base construction using statistical learning and inference. In: VLDS. CEUR Workshop Proceedings, vol. 884, pp. 25–28. CEUR-WS.org (2012)

    Google Scholar 

  23. Poole, D.: The independent choice logic and beyond. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.) Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911, pp. 222–243. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78652-8_8

    Chapter  MATH  Google Scholar 

  24. Raedt, L.D., Kimmig, A., Toivonen, H.: Problog: a probabilistic prolog and its application in link discovery. In: IJCAI, pp. 2462–2467 (2007)

    Google Scholar 

  25. Richardson, M., Domingos, P.M.: Markov logic networks. Mach. Learn. 62(1–2), 107–136 (2006)

    Article  MATH  Google Scholar 

  26. Sato, T., Kameya, Y.: PRISM: a language for symbolic-statistical modeling. In: IJCAI, pp. 1330–1339. Morgan Kaufmann (1997)

    Google Scholar 

  27. Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases. Synthesis Lectures on Data Management. Morgan & Claypool Publishers (2011)

    Google Scholar 

  28. Vennekens, J., Denecker, M., Bruynooghe, M.: CP-logic: a language of causal probabilistic events and its relation to logic programming. Theory Pract. Log. Program. 9(3), 245–308 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Vieira, T., Francis-Landau, M., Filardo, N.W., Khorasani, F., Eisner, J.: Dyna: toward a self-optimizing declarative language for machine learning applications. In: MAPL@PLDI, pp. 8–17. ACM (2017)

    Google Scholar 

  30. Wang, J., Domingos, P.M.: Hybrid Markov logic networks. In: AAAI, pp. 1106–1111. AAAI Press (2008)

    Google Scholar 

Download references

Acknowledgments

This work is about some ongoing research with Matthias Lanzinger, Michael Morak, and Andreas Pieris [2]. This work was partially supported by Italian Ministry of Research (MUR) under PNRR project FAIR “Future AI Research”, CUP H23C22000860006, under PNRR project Tech4You “Technologies for climate change adaptation and quality of life improvement”, CUP H23C22000370006, and under PNRR project SERICS “SEcurity and RIghts in the CyberSpace”, CUP H73C22000880001; by the LAIA lab (part of the SILA labs) and by GNCS-INdAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Alviano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alviano, M. (2023). Generative Datalog and Answer Set Programming – Extended Abstract. In: Gaggl, S., Martinez, M.V., Ortiz, M. (eds) Logics in Artificial Intelligence. JELIA 2023. Lecture Notes in Computer Science(), vol 14281. Springer, Cham. https://doi.org/10.1007/978-3-031-43619-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43619-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43618-5

  • Online ISBN: 978-3-031-43619-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics