Skip to main content

Task Planning Support for Arborists and Foresters: Comparing Deep Learning Approaches for Tree Inventory and Tree Vitality Assessment Based on UAV-Data

  • Conference paper
  • First Online:
Innovations for Community Services (I4CS 2023)

Abstract

Climate crisis and correlating prolonged, more intense periods of drought threaten tree health in cities and forests. In consequence, arborists and foresters suffer from increasing workloads and, in the best case, a consistent but often declining workforce. To optimise workflows and increase productivity, we propose a novel open-source end-to-end approach that generates helpful information and improves task planning of those who care for trees in and around cities. Our approach is based on RGB and multispectral UAV data, which is used to create tree inventories of city parks and forests and to deduce tree vitality assessments through statistical indices and Deep Learning. Due to EU restrictions regarding flying drones in urban areas, we will also use multispectral satellite data and fifteen soil moisture sensors to extend our tree vitality-related basis of data. Furthermore, Bamberg already has a georeferenced tree cadastre of around 15,000 solitary trees in the city area, which is also used to generate helpful information. All mentioned data is then joined and visualised in an interactive web application allowing arborists and foresters to generate individual and flexible evaluations, thereby improving daily task planning.

Special thanks to our cooperation partner Smart City Bamberg. The project BaKIM is supported by Kommunal? Digital! funding of the Bavarian Ministry for Digital Affairs. Project funding period: 01.01.2022 - 31.03.2024.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/OpenDroneMap/WebODM.

  2. 2.

    https://www.agisoft.com/.

  3. 3.

    https://dash.plotly.com/.

  4. 4.

    https://geopandas.org/en/stable/.

  5. 5.

    https://plotly.com/python/.

  6. 6.

    https://github.com/consbio/mbtileserver.

References

  1. Agvolution: Soil moisture sensor (2023). https://www.agvolution.com/

  2. Airbus: pleiades neo (2023). https://www.eoportal.org/satellite-missions/pleiades-neo

  3. Ball, J.G.C., et al.: Accurate tropical forest individual tree crown delineation from RGB imagery using mask r-CNN. bioRxiv (2022). https://doi.org/10.1101/2022.07.10.499480

  4. Barnes, E., et al.: Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In: Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA, vol. 1619, p. 6 (2000)

    Google Scholar 

  5. Boeing, F., Rakovec, O., Kumar, R., Samaniego, L., Schrön, M., Hildebrandt, A., Rebmann, C., Thober, S., Müller, S., Zacharias, S., Bogena, H., Schneider, K., Kiese, R., Attinger, S., Marx, A.: High-resolution drought simulations and comparison to soil moisture observations in germany. Hydrology and Earth System Sciences 26(19), 5137–5161 (2022). 10.5194/hess-26-5137-2022, https://hess.copernicus.org/articles/26/5137/2022/

  6. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  7. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  8. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  9. Cohn, R., Holm, E.: Unsupervised machine learning via transfer learning and k-means clustering to classify materials image data. Integr. Mater. Manuf. Innov. 10(2), 231–244 (2021). https://doi.org/10.1007/s40192-021-00205-8

    Article  Google Scholar 

  10. DJI: M3m (2023). https://ag.dji.com/de/mavic-3-m

  11. Erikson, M., Olofsson, K.: Comparison of three individual tree crown detection methods. Mach. Vis. Appl. 16(4), 258–265 (2005). https://doi.org/10.1007/s00138-005-0180-y

    Article  Google Scholar 

  12. European Commission: Easy access rules for unmanned aircraft systems (regulations (eu) 2019/947 and 2019/945) - revision from September 2022 (2022). https://www.easa.europa.eu/en/document-library/easy-access-rules/easy-access-rules-unmanned-aircraft-systems-regulations-eu

  13. Ferreira, M.P., et al.: Individual tree detection and species classification of Amazonian palms using UAV images and deep learning. Forest Ecol. Manag. 475, 118397 (2020)

    Google Scholar 

  14. Fischer, J.: Waldzustand 2022. AFZ Der Wald 7/2023(7), 35–36 (2023). https://www.digitalmagazin.de/marken/afz-derwald/hauptheft/2023-7/waldschutz/035_waldzustand-2022

  15. Franklin, S.E.: Pixel- and object-based multispectral classification of forest tree species from small unmanned aerial vehicles. J. Unmanned Veh. Syst. 6(4), 195–211 (2018). https://doi.org/10.1139/juvs-2017-0022

    Article  Google Scholar 

  16. Gini, R., Passoni, D., Pinto, L., Sona, G.: Use of unmanned aerial systems for multispectral survey and tree classification: a test in a park area of northern Italy. Eur. J. Remote Sens. 47(1), 251–269 (2014). https://doi.org/10.5721/eujrs20144716

    Article  Google Scholar 

  17. Govender, M., Govender, P., Weiersbye, I., Witkowski, E., Ahmed, F.: Review of commonly used remote sensing and ground-based technologies to measure plant water stress. Water SA 35(5) (2009)

    Google Scholar 

  18. Gradišar, L., Dolenc, M.: Transfer and unsupervised learning: an integrated approach to concrete crack image analysis. Sustainability 15(4), 3653 (2023). https://doi.org/10.3390/su15043653

    Article  Google Scholar 

  19. Hanapi, S.N.H.S., Shukor, S.A.A., Johari, J.: A review on remote sensing-based method for tree detection and delineation. IOP Conf. Ser. Mater. Sci. Eng. 705(1), 012024 (2019). https://doi.org/10.1088/1757-899x/705/1/012024

  20. Hao, Z., et al.: Automated tree-crown and height detection in a young forest plantation using mask region-based convolutional neural network (mask r-CNN). ISPRS J. Photogramm. Remote. Sens. 178, 112–123 (2021). https://doi.org/10.1016/j.isprsjprs.2021.06.003

    Article  Google Scholar 

  21. Holschneider, M., Kronland-Martinet, R., Morlet, J., Tchamitchian, P.: A real-time algorithm for signal analysis with the help of the wavelet transform. In: Combes, J.M., Grossmann, A., Tchamitchian, P. (eds.) Wavelets. Inverse Problems and Theoretical Imaging, pp. 286–297. Springer, Heidelberg (1990). https://doi.org/10.1007/978-3-642-75988-8_28

  22. Huo, L., Lindberg, E.: Individual tree detection using template matching of multiple Rasters derived from multispectral airborne laser scanning data. Int. J. Remote Sens. 41(24), 9525–9544 (2020). https://doi.org/10.1080/01431161.2020.1800127

    Article  Google Scholar 

  23. Huo, L., Lindberg, E., Bohlin, J., Persson, H.J.: Assessing the detectability of European spruce bark beetle green attack in multispectral drone images with high spatial-and temporal resolutions. Remote Sens. Environ. 287, 113484 (2023)

    Article  Google Scholar 

  24. Ismail, R., Mutanga, O., Bob, U.: Forest health and vitality: the detection and monitoring of Pinus Patula trees infected by Sirex Noctilio using digital multispectral imagery. Southern Hemisphere Forestry J. 69(1), 39–47 (2007)

    Article  Google Scholar 

  25. Ji, M., et al.: Early detection of cervical cancer by fluorescence lifetime imaging microscopy combined with unsupervised machine learning. Int. J. Mol. Sci. 23(19), 11476 (2022). https://doi.org/10.3390/ijms231911476

    Article  Google Scholar 

  26. Kattenborn, T., Leitloff, J., Schiefer, F., Hinz, S.: Review on convolutional neural networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote. Sens. 173, 24–49 (2021)

    Article  Google Scholar 

  27. Kehr, R.: Possible effects of drought stress on native broadleaved tree species - assessment in light of the 2018/19 drought. Jahrbuch der Baumpflege 2020, 103–107 (2020)

    Google Scholar 

  28. Larsen, M., Eriksson, M., Descombes, X., Perrin, G., Brandtberg, T., Gougeon, F.A.: Comparison of six individual tree crown detection algorithms evaluated under varying forest conditions. Int. J. Remote Sens. 32(20), 5827–5852 (2011). https://doi.org/10.1080/01431161.2010.507790

    Article  Google Scholar 

  29. Lausch, A., Heurich, M., Gordalla, D., Dobner, H.J., Gwillym-Margianto, S., Salbach, C.: Forecasting potential bark beetle outbreaks based on spruce forest vitality using hyperspectral remote-sensing techniques at different scales. For. Ecol. Manag. 308, 76–89 (2013)

    Article  Google Scholar 

  30. Liao, L., Cao, L., Xie, Y., Luo, J., Wang, G.: Phenotypic traits extraction and genetic characteristics assessment of eucalyptus trials based on UAV-borne LiDAR and RGB images. Remote Sens. 14(3), 765 (2022). https://doi.org/10.3390/rs14030765

    Article  Google Scholar 

  31. Lobo Torres, D., et al.: Applying fully convolutional architectures for semantic segmentation of a single tree species in urban environment on high resolution UAV optical imagery. Sensors 20(2), 563 (2020)

    Google Scholar 

  32. Lucena, F., Breunig, F.M., Kux, H.: The combined use of UAV-based RGB and DEM images for the detection and delineation of orange tree crowns with mask r-CNN: an approach of labeling and unified framework. Future Internet 14(10), 275 (2022). https://doi.org/10.3390/fi14100275

    Article  Google Scholar 

  33. Miraki, M., Sohrabi, H., Fatehi, P., Kneubuehler, M.: Detection of mistletoe infected trees using UAV high spatial resolution images. J. Plant Dis. Prot. 128, 1679–1689 (2021)

    Article  Google Scholar 

  34. Monnet, J.M., Mermin, E., Chanussot, J., Berger, F.: Tree top detection using local maxima filtering: a parameter sensitivity analysis. In: 10th International Conference on LiDAR Applications for Assessing Forest Ecosystems (Silvilaser 2010) (2010)

    Google Scholar 

  35. Morales, G., Kemper, G., Sevillano, G., Arteaga, D., Ortega, I., Telles, J.: Automatic segmentation of Mauritia Flexuosa in unmanned aerial vehicle (UAV) imagery using deep learning. Forests 9(12), 736 (2018)

    Article  Google Scholar 

  36. Moran, M., Clarke, T., Inoue, Y., Vidal, A.: Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens. Environ. 49(3), 246–263 (1994)

    Article  Google Scholar 

  37. Pitkänen, J.: Individual tree detection in digital aerial images by combining locally adaptive binarization and local maxima methods. Can. J. For. Res. 31(5), 832–844 (2001). https://doi.org/10.1139/x01-013

    Article  Google Scholar 

  38. Quantum Systems: Trinity F90+ (2023). https://quantum-systems.com/trinity-f90/

  39. Rama, H.O., et al.: Climate Change 2022: Impacts, Adaptation and Vulnerability Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2022). https://doi.org/10.1017/9781009325844

  40. Raum, S., Collins, M.C., Urquhart, J., Potter, C., Pauleit, S., Egerer, M.: Die vielfältigen auswirkungen von baumschädlingen und krankheitserregern im urbanen raum. ProBAUM 1/2023, 103–107 (2023)

    Google Scholar 

  41. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  42. Rouse Jr., J.W., Haas, R.H., Deering, D., Schell, J., Harlan, J.C.: Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation (1974)

    Google Scholar 

  43. Samek, W., Wiegand, T., Müller, K.R.: Explainable artificial intelligence: understanding, visualizing and interpreting deep learning models. arXiv preprint arXiv:1708.08296 (2017)

  44. Schiefer, F., Frey, J., Kattenborn, T.: Fortress: forest tree species segmentation in very-high resolution UAV-based orthomosaics (2022). https://doi.org/10.35097/538

  45. Schiefer, F., et al.: Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 170, 205–215 (2020)

    Article  Google Scholar 

  46. Schäfer, E., Heiskanen, J., Heikinheimo, V., Pellikka, P.: Mapping tree species diversity of a tropical montane forest by unsupervised clustering of airborne imaging spectroscopy data. Ecol. Ind. 64, 49–58 (2016). https://doi.org/10.1016/j.ecolind.2015.12.026

    Article  Google Scholar 

  47. Senoo, T., Honjyo, T.: Assessment of tree stress by airborne multi-spectral scanning data. J. Jpn. Forestry Soc. 70(2), 45–56 (1988)

    Google Scholar 

  48. Waefler, T., Schmid, U.: Explainability is not enough: requirements for human-AI-partnership in complex socio-technical systems. In: Proceedings of the 2nd European Conference on the Impact of Artificial Intelligence and Robotics (ECIAIR 2020), pp. 185–194. ACPIL (2020)

    Google Scholar 

  49. Wang, L., Gong, P., Biging, G.S.: Individual tree-crown delineation and treetop detection in high-spatial-resolution aerial imagery. Photogramm. Eng. Remote Sens. 70(3), 351–357 (2004)

    Article  Google Scholar 

  50. Weinstein, B.G., Marconi, S., Aubry-Kientz, M., Vincent, G., Senyondo, H., White, E.P.: DeepForest: a Python package for RGB deep learning tree crown delineation. Methods Ecol. Evol. 11(12), 1743–1751 (2020). https://doi.org/10.1111/2041-210x.13472

    Article  Google Scholar 

  51. Yang, M., et al.: Detecting and mapping tree crowns based on convolutional neural network and google earth images. Int. J. Appl. Earth Obs. Geoinf. 108, 102764 (2022). https://doi.org/10.1016/j.jag.2022.102764

    Article  Google Scholar 

  52. Yu, K., et al.: Comparison of classical methods and mask r-CNN for automatic tree detection and mapping using UAV imagery. Remote Sens. 14(2), 295 (2022). https://doi.org/10.3390/rs14020295

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Troles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Troles, J., Nieding, R., Simons, S., Schmid, U. (2023). Task Planning Support for Arborists and Foresters: Comparing Deep Learning Approaches for Tree Inventory and Tree Vitality Assessment Based on UAV-Data. In: Krieger, U.R., Eichler, G., Erfurth, C., Fahrnberger, G. (eds) Innovations for Community Services. I4CS 2023. Communications in Computer and Information Science, vol 1876. Springer, Cham. https://doi.org/10.1007/978-3-031-40852-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40852-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40851-9

  • Online ISBN: 978-3-031-40852-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics