Skip to main content

Decentralized Strongly-Convex Optimization with Affine Constraints: Primal and Dual Approaches

  • Conference paper
  • First Online:
Advances in Optimization and Applications (OPTIMA 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1739))

Included in the following conference series:

Abstract

Decentralized optimization is a common paradigm used in distributed signal processing and sensing as well as privacy-preserving and large-scale machine learning. It is assumed that several computational entities locally hold objective functions and are connected by a network. The agents aim to commonly minimize the sum of the local objectives subject by making gradient updates and exchanging information with their immediate neighbors. Theory of decentralized optimization is pretty well-developed in the literature. In particular, it includes lower bounds and optimal algorithms. In this paper, we assume that along with an objective, each node also holds affine constraints. We discuss several primal and dual approaches to decentralized optimization problem with affine constraints.

The work of D. Yarmoshik in Sects. 1, 6, 7 was supported by the program “Leading Scientific Schools” (grant no. NSh-775.2022.1.1). The work of A. Rogozin and A. Gasnikov in Sects. 25 was supported by Russian Science Foundation (project No. 21-71- 30005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Source code: https://github.com/niquepolice/decentr_constr_dual.

References

  1. Erseghe, T.: Distributed optimal power flow using ADMM. IEEE Trans. Power Syst. 29(5), 2370–2380 (2014). https://doi.org/10.1109/TPWRS.2014.2306495

    Article  Google Scholar 

  2. Falsone, A., Margellos, K., Garatti, S., Prandini, M.: Dual decomposition for multi-agent distributed optimization with coupling constraints. Automatica 84, 149–158 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Falsone, A., Notarnicola, I., Notarstefano, G., Prandini, M.: Tracking-ADMM for distributed constraint-coupled optimization. Automatica 117, 1–13 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gorbunov, E., Dvinskikh, D., Gasnikov, A.: Optimal decentralized distributed algorithms for stochastic convex optimization. arXiv:1911.07363 (2019)

  5. Harris, C.R., et al.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2

    Article  Google Scholar 

  6. Kakade, S.M., Shalev-Shwartz, S., Tewari, A.: On the duality of strong convexity and strong smoothness: learning applications and matrix regularization. Technical report. Toyota Technological Institute (2009)

    Google Scholar 

  7. Kovalev, D., Gasnikov, A., Richtárik, P.: Accelerated primal-dual gradient method for smooth and convex-concave saddle-point problems with bilinear coupling. arXiv preprint arXiv:2112.15199 (2021)

  8. Kovalev, D., Salim, A., Richtárik, P.: Optimal and practical algorithms for smooth and strongly convex decentralized optimization. Adv. Neural. Inf. Process. Syst. 33, 18342–18352 (2020)

    Google Scholar 

  9. Liang, S., Wang, L.Y., Yin, G.: Distributed smooth convex optimization with coupled constraints. IEEE Trans. Autom. Control 65, 347–353 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liang, S., Zheng, X., Hong, Y.: Distributed ninsmooth optimization with coupled inequality constraints via modified Lagrangian function. IEEE Trans. Autom. Control 63, 1753–1759 (2018)

    Article  MATH  Google Scholar 

  11. Molzahn, D.K., et al.: A survey of distributed optimization and control algorithms for electric power systems. IEEE Trans. Smart Grid 8(6), 2941–2962 (2017). https://doi.org/10.1109/TSG.2017.2720471

    Article  Google Scholar 

  12. Necoara, I., Nedelcu, V.: Distributed dual gradient methods and error bound conditions. arXiv:1401.4398 (2014)

  13. Necoara, I., Nedelcu, V.: On linear convergence of a distributed dual gradient algorithm for linearly constrained separable convex problems. Automatica 55, 209–216 (2015). https://doi.org/10.1016/j.automatica.2015.02.038, https://www.sciencedirect.com/science/article/pii/S0005109815001004

  14. Necoara, I., Nedelcu, V., Dumitrache, I.: Parallel and distributed optimization methods for estimation and control in networks. J. Process Control 21(5), 756–766 (2011). https://doi.org/10.1016/j.jprocont.2010.12.010, https://www.sciencedirect.com/science/article/pii/S095915241000257X. special Issue on Hierarchical and Distributed Model Predictive Control

  15. Nesterov, Y.: A method of solving a convex programming problem with convergence rate \(o(1/k^2)\). Soviet Math. Doklady 27(2), 372–376 (1983)

    MATH  Google Scholar 

  16. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic Publishers, Massachusetts (2004)

    Book  MATH  Google Scholar 

  17. Patari, N., Venkataramanan, V., Srivastava, A., Molzahn, D.K., Li, N., Annaswamy, A.: Distributed optimization in distribution systems: use cases, limitations, and research needs. IEEE Trans. Power Syst. 1–1 (2021). https://doi.org/10.1109/TPWRS.2021.3132348

  18. Rostampour, V., Haar, O.T., Keviczky, T.: Distributed stochastic reserve scheduling in AC power systems with uncertain generation. IEEE Trans. Power Syst. 34(2), 1005–1020 (2019). https://doi.org/10.1109/TPWRS.2018.2878888

    Article  Google Scholar 

  19. Scaman, K., Bach, F., Bubeck, S., Lee, Y.T., Massoulié, L.: Optimal algorithms for smooth and strongly convex distributed optimization in networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 3027–3036. PMLR, International Convention Centre, Sydney, Australia (2017). http://proceedings.mlr.press/v70/scaman17a.html

  20. Wang, J., Hu, G.: Distributed optimization with coupling constraints in multi-cluster networks based on dual proximal gradient method. arXiv preprint arXiv:2203.00956 (2022)

  21. Wnag, Z., Ong, C.J.: Distributed model predictive control of linear descrete-times systems with local and global cosntraints. Automatica 81, 184–195 (2017)

    Article  Google Scholar 

  22. Yarmoshik, D., Rogozin, A., Khamisov, O., Dvurechensky, P., Gasnikov, A., et al.: Decentralized convex optimization under affine constraints for power systems control. arXiv preprint arXiv:2203.16686 (2022)

  23. Yuan, D., Ho, D.W.C., Jiang, G.P.: An adaptive primal-dual subgradient algorithm for online distributed constrained optimization. IEEE Trans. Cybern. 48, 3045–3055 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Rogozin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rogozin, A., Yarmoshik, D., Kopylova, K., Gasnikov, A. (2022). Decentralized Strongly-Convex Optimization with Affine Constraints: Primal and Dual Approaches. In: Olenev, N., Evtushenko, Y., Jaćimović, M., Khachay, M., Malkova, V., Pospelov, I. (eds) Advances in Optimization and Applications. OPTIMA 2022. Communications in Computer and Information Science, vol 1739. Springer, Cham. https://doi.org/10.1007/978-3-031-22990-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22990-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22989-3

  • Online ISBN: 978-3-031-22990-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics