Skip to main content

Synthesis of Trajectory Planning Algorithms Using Evolutionary Optimization Algorithms

  • Conference paper
  • First Online:
Advances in Optimization and Applications (OPTIMA 2022)

Abstract

The article considers the problem of planning the optimal trajectory of a delta robot. The workspace of the robot is limited by the range of permissible values of the angles of the drive revolute joints, interference of links and singularities. Additional constraints related to the presence of obstacles have been introduced. Acceptable values of the robot’s input coordinates are obtained based on the inverse kinematics, taking into account the constraints of the workspace, represented as a partially ordered set of integers. For the given initial and final coordinates, a randomly generated family of trajectories belonging to a valid set is obtained. Optimization of each of the trajectories of the family based on evolutionary algorithms is performed. The optimization criterion is a function proportional to the duration of movement along the trajectory. The results of modeling are presented.

This work was supported by the state assignment of Ministry of Science and Higher Education of the Russian Federation under Grant FZWN-2020-0017.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. El Khaili, M.: Visibility graph for path planning in the presence of moving obstacles. IRACST - Eng. Sci. Technol. Int. J. (ESTIJ) 4(4), 118–123 (2014)

    Google Scholar 

  2. Choset, H., et al.: Principles of Robot Motion-Theory, Algorithms, and Implementation. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  3. Russell, S.J., Norvig, P.: Artificial intelligence: a modern approach. Neurocomputing 9(2), 215–218 (1995)

    Article  MATH  Google Scholar 

  4. Zeng, W., Church, R.L.: Finding shortest paths on real road networks: the case for A*. Int. J. Geogr. Inf. Sci. 23(4), 531–543 (2009)

    Article  Google Scholar 

  5. Korf, R.E.: Depth-first iterative-deepening. An optimal admissible tree search. Artif. Intell. 27(1), 97–109 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bolandi, H., Ehyaei, A.F.: A novel method for trajectory planning of cooperative mobile manipulators. J. Med. Signals Sens. 1(1), 24–35 (2011)

    Article  Google Scholar 

  7. Völz, A., Graichen, K.: An optimization-based approach to dual-arm motion planning with closed kinematics. In: Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, pp. 8346–8351. IEEE (2018)

    Google Scholar 

  8. McMahon, T., Sandstrom, R., Thomas, S., Amato, N.M.: Manipulation planning with directed reachable volumes. In: IEEE International Conference on Intelligent Robots and Systems 2017, pp. 4026–4033 (2017)

    Google Scholar 

  9. Clavel, R.: Conception d’un robot parallèle rapide à 4 degrés de liberté. Ph.D. Thesis, EPFL, Lausanne, Switzerland (1991)

    Google Scholar 

  10. Williams II, R.L.: The delta parallel robot: kinematics solutions. www.ohio.edu/people/williar4/html/pdf/DeltaKin.pdf. Accessed 9 Oct 2022

  11. Khalapyan, S., Rybak, L., Malyshev, D., Kuzmina, V.: Synthesis of parallel robots optimal motion trajectory planning algorithms. In: IX International Conference on Optimization and Applications (OPTIMA 2018), pp. 311–324 (2018)

    Google Scholar 

  12. Rybak, L., Malyshev, D., Gaponenko, E.: Optimization algorithm for approximating the solutions set of nonlinear inequalities systems in the problem of determining the robot workspace. Commun. Comput. Inf. Sci. 1340, 27–37 (2020)

    MathSciNet  Google Scholar 

  13. Rogers, D.: Procedural Elements for Computer Graphics. McGraw-Hill (1985)

    Google Scholar 

  14. line3D - 3D Bresenham’s (a 3D line drawing algorithm). https://ftp.isc.org/pub/usenet/comp.sources.unix/volume26/line3d. Accessed 9 Oct 2022

  15. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge (1975)

    Google Scholar 

  16. Diveev, A.: Cartesian genetic programming for synthesis of control system for group of robots. In: 28th Mediterranean Conference on Control and Automation, MED 2020, pp. 972–977 (2020)

    Google Scholar 

  17. Zanchettin, A.M., Messeri, C., Cristantielli, D., Rocco, P.: Trajectory optimisation in collaborative robotics based on simulations and genetic algorithms. Int. J. Intell. Robot. Appl. 9, 707–723 (2022)

    Article  Google Scholar 

  18. Diveev, A.I., Konstantinov, S.V.: Evolutionary algorithms for the problem of optimal control. RUDN J. Eng. Res. 18(2), 254–265 (2017)

    Google Scholar 

  19. Kennedy, J.; Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. IV, pp. 1942–1948 (1995)

    Google Scholar 

  20. Shi, Y.; Eberhart, R.C.: A modified particle swarm optimizer. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 69–73 (1998)

    Google Scholar 

  21. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  22. Choubey, C., Ohri, J.: Optimal trajectory generation for a 6-DOF parallel manipulator using grey wolf optimization algorithm. Robotica 39(3), 411–427 (2021)

    Article  Google Scholar 

  23. Sen, M.A., Kalyoncu, M.: Grey wolf optimizer based tuning of a hybrid LQR-PID controller for foot trajectory control of a quadruped robot. Gazi Univ. J. Sci. 32(2), 674–684 (2019)

    Google Scholar 

  24. Zafar, M.N., Mohanta, J.C., Keshari, A.: GWO-potential field method for mobile robot path planning and navigation control. Arab. J. Sci. Eng. 46(8), 8087–8104 (2021). https://doi.org/10.1007/s13369-021-05487-w

    Article  Google Scholar 

  25. Diveev, A.I., Konstantinov, S.V.: Optimal control problem and its solution by grey wolf optimizer algorithm. RUDN J. Eng. Res. 19(1), 67–79 (2018)

    Google Scholar 

  26. Malyshev, D., Rybak, L., Carbone, G., Semenenko, T., Nozdracheva, A.: Optimal design of a parallel manipulator for aliquoting of biomaterials considering workspace and singularity zones. Appl. Sci. 12(4), 2070 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the state assignment of Ministry of Science and Higher Education of the Russian Federation under Grant FZWN-2020-0017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Malyshev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Malyshev, D., Cherkasov, V., Rybak, L., Diveev, A. (2022). Synthesis of Trajectory Planning Algorithms Using Evolutionary Optimization Algorithms. In: Olenev, N., Evtushenko, Y., Jaćimović, M., Khachay, M., Malkova, V., Pospelov, I. (eds) Advances in Optimization and Applications. OPTIMA 2022. Communications in Computer and Information Science, vol 1739. Springer, Cham. https://doi.org/10.1007/978-3-031-22990-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22990-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22989-3

  • Online ISBN: 978-3-031-22990-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics