Skip to main content

The Relative Hodge–Tate Spectral Sequence: An Overview

  • Conference paper
  • First Online:
p-adic Hodge Theory, Singular Varieties, and Non-Abelian Aspects (SISYPHT 2019)

Part of the book series: Simons Symposia ((SISY))

Included in the following conference series:

  • 348 Accesses

Abstract

We give in this note an overview of a recent work (Abbes and Gros, Les suites spectrales de Hodge–Tate. Preprint, 2020. https://arxiv.org/abs/2003.04714.) leading to a generalization of the Hodge–Tate spectral sequence to morphisms. The latter takes place in Faltings topos, but its construction requires the introduction of a relative variant of this topos which is the main novelty of our work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We treat in [2] schemes with toric singularities using logarithmic geometry, but for simplicity, we consider in this overview only the smooth case.

References

  1. A. Abbes, Éléments de géométrie rigide. Volume I. Construction et étude géométrique des espaces rigides, Progress in Mathematics Vol. 286, Birkhäuser (2010).

    Google Scholar 

  2. A. Abbes, M. Gros, Les suites spectrales de Hodge–Tate, preprint (2020) arxiv:2003.04714. To appear in Astérisque.

  3. A. Abbes, M. Gros, T. Tsuji, The p-adic Simpson correspondence, Ann. of Math. Stud., 193, Princeton Univ. Press (2016).

  4. P. Achinger, K(π,  1)-neighborhoods and comparison theorems, Compositio Math. 151 (2015), 1945–1964.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Artin, A. Grothendieck, J. L. Verdier, Théorie des topos et cohomologie étale des schémas, SGA 4, Lecture Notes in Math. Tome 1, 269 (1972); Tome 2, 270 (1972); Tome 3, 305 (1973), Springer-Verlag.

    Google Scholar 

  6. P. Berthelot, A. Grothendieck, L. Illusie, Théorie des intersections et théorème de Riemann-Roch, SGA 6, Lecture Notes in Math. 225 (1971), Springer-Verlag.

    Google Scholar 

  7. A. Caraiani, P. Scholze, On the generic part of the cohomology of compact unitary Shimura varieties, Annals of Mathematics 186 (2017), 649–766.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Faltings, p-adic Hodge theory, J. Amer. Math. Soc. 1 (1988), 255–299.

    MathSciNet  MATH  Google Scholar 

  9. G. Faltings, Almost étale extensions, Cohomologies p-adiques et applications arithmétiques. II, Astérisque 279 (2002), 185–270.

    MATH  Google Scholar 

  10. T. He, Cohomological descent for Faltings’p-adic Hodge theory and applications, preprint (2021), arXiv:2104.12645.

  11. O. Hyodo, On the Hodge–Tate decomposition in the imperfect residue field case, J. Reine Angew. Math. 365 (1986), 97–113.

    MathSciNet  MATH  Google Scholar 

  12. R. Kiehl, Ein “Descente”-Lemma und Grothendiecks Projektionssatz für nichtnoethersche Schemata, Math. Ann. 198 (1972), 287–316.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Liu, X. Zhu, Rigidity and a Riemann-Hilbert correspondence forp-adic local systems, Invent. math. 207 (2017), 291–343.

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Scholze, Perfectoid spaces: A survey, Current Developments in Mathematics (2012), 193–227.

    Google Scholar 

  15. P. Scholze, p-adic Hodge theory for rigid-analytic varieties, Forum of Mathematics, Pi, 1 (2013).

    Google Scholar 

  16. J. Tate, p-divisible groups, Proceedings of a Conference on Local Fields (Driebergen, 1966), Springer (1967), Berlin, 158–183.

    Google Scholar 

  17. T. Tsuji, p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. math. 137 (1999), 233–411.

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Tsuji, Semi-stable conjecture of Fontaine-Jannsen: a survey, in Cohomologies p-adiques et applications arithmétiques (II), Astérisque 279 (2002), 323–370.

    MATH  Google Scholar 

Download references

Acknowledgements

We would like first to convey our deep gratitude to G. Faltings for the continuing inspiration coming from his work on p-adic Hodge theory. We also thank very warmly O. Gabber and T. Tsuji for the exchanges we had on various aspects discussed in this work. Their invaluable expertise has enabled us to avoid long and unnecessary detours. The first author (A.A) thanks the University of Tokyo and Tsinghua University for their hospitality during several visits where parts of this work have been developed and presented. He expresses his gratitude to T. Saito and L. Fu for their invitations. The authors sincerely thank also B. Bhatt and M. Olsson for their invitation to the second Simons symposium (April 28–May 4, 2019) on p-adic Hodge theory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Gros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abbes, A., Gros, M. (2023). The Relative Hodge–Tate Spectral Sequence: An Overview. In: Bhatt, B., Olsson, M. (eds) p-adic Hodge Theory, Singular Varieties, and Non-Abelian Aspects. SISYPHT 2019. Simons Symposia. Springer, Cham. https://doi.org/10.1007/978-3-031-21550-6_1

Download citation

Publish with us

Policies and ethics