Skip to main content

Automatic Recognition System for Traffic Signs in Ecuador Based on Faster R-CNN with ZFNet

  • Conference paper
  • First Online:
Advanced Research in Technologies, Information, Innovation and Sustainability (ARTIIS 2022)

Abstract

This research presents an application of the Deep Learning technology in the development of an automatic system detection of traffic signs of Ecuador. The development of this work has been divided into two parts, i) in first a database was built with regulatory and preventive traffic signs, taken in urban environments from several cities in Ecuador. The dataset consists of 52 classes, collected in the various lighting environments (dawn, day, sunset and cloudy) from 6 am to 7 pm, in various localities of Ecuador, ii) then, an object detector based on Faster-RCNN with ZF-Net was implemented as a detection/recognition module. The entire experimental part was developed on the ViiA technology platform, which consists of a vehicle for the implementation of driving assistance systems using Computer Vision and Artificial Intelligence, in real road driving conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agencia Nacional de Tránsito del Ecuador. Siniestros Junio 2017 (2018)

    Google Scholar 

  2. Agencia Nacional de Tránsito del Ecuador. Estadísticas de siniestros de tránsito (2021)

    Google Scholar 

  3. Arcos-García, A., Alvarez-García, J., Soria-Morillo, L.: Evaluation of deep neural networks for traffic sign detection systems. Neurocomputing 316, 332–344 (2018)

    Article  Google Scholar 

  4. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: a benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 34, 743–761 (2012)

    Article  Google Scholar 

  5. Everingham, M., Van-Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL visual object classes (VOC) challenge. Int. J. Comput. Vis. 2, 303–338 (2010). https://doi.org/10.1007/s11263-009-0275-4

    Article  Google Scholar 

  6. Fawzi, A., Samulowitz, H., Turaga, D., Frossard, P.: Adaptive data augmentation for image classification. In 2016 IEEE International Conference on Image Processing (ICIP) (2016)

    Google Scholar 

  7. Flores-Calero, M., et al.: Ecuadorian traffic sign detection through color information and a convolutional neural network. IEEE ANDESCON, pp. 1–6 (2020)

    Google Scholar 

  8. Hagl, M., Kouabenan, D.R.: Safe on the road - Does advanced driver assistance systems use affect road risk perception? Transp. Res. Part F: Traffic Psychol. Behav. 73, 488–498 (2020)

    Article  Google Scholar 

  9. He, H., Hui, L., Gu, W.: Transferring digit classifier’s features to a traffic sign detector. In: International Conference on Progress in Informatics and Computing (PIC) (2017)

    Google Scholar 

  10. Hu, Y., Zhang, C., Zhou, D., Wang, X., Bai, X., Liu, W.: Traffic sign detection and recognition using fully convolutional network guided proposals. Neurocomputing 214, 758–766 (2016)

    Article  Google Scholar 

  11. Huang, L.L: Chinese Traffic Sign Database TSDD

    Google Scholar 

  12. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. Int. J. Comput. Vis. 675–678 (2014)

    Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR, abs/1412.6980 (2015)

    Google Scholar 

  14. Lau, M.M., Lim, K.H., Gopalai, A.A.: Malaysia traffic sign recognition with convolutional neural network. Int. J. Comput. Vis., 1006–1010 (2015)

    Google Scholar 

  15. Mogelmose, A., Liu, D., Trivedi, M.M.: Detection of U.S. Traffic Signs. IEEE Trans. Intell. Transp. Syst. 16(6), 3116–3125 (2015)

    Article  Google Scholar 

  16. Mohd-Isa, W.-N., Abdullah, M.-S., Sarzil, M., Abdullah, J., Ali, A., Hashim, N.: Detection of Malaysian traffic signs via modified YOLOv3 algorithm. Int. J. Comput. Vis. (2020)

    Google Scholar 

  17. Nguyen, B.T., Shim, J., Kim, J.K.: Fast traffic sign detection under challenging conditions. Int. J. Comput. Vis. 1, 749–752 (2014)

    Google Scholar 

  18. NVIDIA. Jetson Nano (2021)

    Google Scholar 

  19. World Health Rankings. Road traffic accidents (2017)

    Google Scholar 

  20. Shaoqing, R., Kaiming, H., Ross, G., Sun, J.: Towards real-time object detection with region proposal networks, Faster R-CNN (2015)

    Google Scholar 

  21. Salti, S., Petrelli, A., Tombari, F., Fioraio, N., DiStefano, L.: Traffic sign detection via interest region extraction. Pattern Recogn. 48, 1039–1049 (2015)

    Article  Google Scholar 

  22. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(60), 303–338 (2019)

    Google Scholar 

  23. Sirbu, M.-A., Baiasu, A., Bogdan, R., Bogdan, R., Vida, M.: Smart traffic sign detection on autonomous car (2018)

    Google Scholar 

  24. Song, S., Que, Z., Hou, J., Sen, D., Song, Y.: An efficient convolutional neural network for small traffic sign detection. J. Syst. Archit. 97, 269–277 (2019)

    Article  Google Scholar 

  25. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: The german traffic sign recognition benchmark: a multi-class classification competition. In: IEEE International Joint Conference on Neural Networks, pp. 1453–1460 (2011)

    Google Scholar 

  26. Tabernik, D., Skocaj, D.: Deep learning for large-scale traffic-sign detection and recognition. IEEE Trans. Intell. Transp. Syst. 21(4), 1427–1440 (2020)

    Article  Google Scholar 

  27. World Health Organization WHO. Control de la velocidad (2017)

    Google Scholar 

  28. World Health Organization WHO. Accidentes de tránsito (2018)

    Google Scholar 

  29. XM and MTR. Berkeley AI Research (BAIR)/The Berkeley Vision, Learning Center (BVLC), and community contributors. Caffe library (2016)

    Google Scholar 

  30. Yang, T., Long, X., Sangaiah, A.K., Zheng, Z., Tong, C.: Deep detection network for real-life traffic sign in vehicular networks. Computer Networks (2018)

    Google Scholar 

  31. Yang, W., Zhang, W.: Real-time traffic signs detection based on YOLO network model. International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC) (2020)

    Google Scholar 

  32. You, S., Bi, Q., Ji, Y., Liu, S., Feng, Y., Fei, W.: Traffic sign detection method based on improved SSD. Artif. Intell. Decision Support Syst. 11(10), 475 (2020)

    Google Scholar 

  33. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks CoRR, abs/1311.2901 (2013)

    Google Scholar 

  34. Zuo, Z., Yu, K., Zhou, Q., Wang, X., Li, T.: Traffic signs detection based on faster R-CNN. In: IEEE 37th International Conference on Distributed Computing Systems Workshops (2017)

    Google Scholar 

Download references

Acknowledgment

This work was supported by I &H Tech, through the direct funding, the electronic equipment, the database and the vehicle for the development of the experiments. Also, we thank the reviewers and editor for their helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed to the development of the work, each one from their expertise.

Corresponding author

Correspondence to Marco Flores-Calero .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zabala-Blanco, D., Aldás, M., Román, W., Gallegos, J., Flores-Calero, M. (2022). Automatic Recognition System for Traffic Signs in Ecuador Based on Faster R-CNN with ZFNet. In: Guarda, T., Portela, F., Augusto, M.F. (eds) Advanced Research in Technologies, Information, Innovation and Sustainability. ARTIIS 2022. Communications in Computer and Information Science, vol 1675. Springer, Cham. https://doi.org/10.1007/978-3-031-20319-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20319-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20318-3

  • Online ISBN: 978-3-031-20319-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics