Skip to main content

“Algozit” Programming Environment for Continuum Mechanics Problem-Solving

  • Chapter
  • First Online:
Behavior of Materials under Impact, Explosion, High Pressures and Dynamic Strain Rates

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 176))

  • 324 Accesses

Abstract

The specific features of the “Algozit” programming environment for functional-object implementation of numerical experiment algorithms in continuum mechanics are investigated. Not only “Algozit” architecture is described, but also the technology providing visibility of complex algorithm representations with convenient program debugging, being based on visual programming of functional-object schemes, is proposed. Implementation of a mathematical model for multi-layer fabric package behavior under rigid element impact is described. Numerical modeling results and the correlation with physical experiment data are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaledin VO, Gileva AE (2017) Functional-object programming mathematical modeling algorithms. In: Materials XXI international science and research conference (in memory of the Mikhail Fedorovich Reshetnev, General Constructor of space vehicles and rocket systems) “Reshetnev Reading”, Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, 8–11 November 2017

    Google Scholar 

  2. Kaledin VO, Paulzen AE, Ulyanov AD (2020) Automated visualization of calculation results in the Algozit programming environment. IOP Conf Ser Mater Sci Eng 865 012019. https://doi.org/10.1088/1757-899X/865/1/012019

  3. Batoz JL, Ben Tahar M (1982) Evaluation of a new quadrilateral thin plate bending element. Int J Numer Meth Engng 18:1655–1677. https://doi.org/10.1002/NME.1620181106

    Article  MATH  Google Scholar 

  4. Bazhenov SL (1997) Dissipation of energy by bulletproof aramid fabric. J Mater Sci 32:4167–4173. https://doi.org/10.1023/A:1018674528993

    Article  Google Scholar 

  5. Mamivand M, Liaghat GH (2010) A model for ballistic impact on multilayer fabric targets. Int J Impact Eng 37(7):1056–1071

    Article  Google Scholar 

  6. Blankenhorn G (2003) Improved numerical investigations of a projectile impact on a textile structure. In: 4th European LS-DYNA Users conference: proceedings of the European users conference, Ulm, 23–24 May 2003

    Google Scholar 

  7. Zheng D, Cheng J, Binienda W K (2006) Numerical modeling of friction effects on the ballistic impact response of single-ply tri-axial braided fabric. In: 9-th international LS-DYNA users conference, Dearborn, 4–6 June 2006

    Google Scholar 

  8. Wang Y, Sun X (2001) Digital-element simulation of textile processes. Compos Sci Technol 61:311–319

    Article  Google Scholar 

  9. Zhou G, Sun X, Wang Y (2004) Multi-chain digital element analysis in textile mechanics. Comps Sci Technol 64:239–244

    Article  Google Scholar 

  10. Ha-Minh C, Imad A, Kanit T, Boussu F (2013) Numerical analysis of a ballistic impact on textile fabric. Inter J Mech Sci 69:32–39

    Article  Google Scholar 

  11. Mossakovsky PA, Antonov FK, Kolotnikov ME, Kostyreva LA et al (2012) Experimental investigation and FE analysis of fiber woven layered composites under dynamic loading. In: Proceedings of the 12th international LS-DYNA users conference, Dearborn, 3–5 June 2012

    Google Scholar 

  12. Dolganina NY, IgnatovA AV, Shabley AA, Sapozhnikov SB (2019) Ballistic resistance modeling of aramid fabric with surface treatment. Commun Comput Inf Sci 965:185–194

    Google Scholar 

  13. Hallquist JO LS-DYNA Theoretical Manual (1998) Livermore software technology corporation. Livermore

    Google Scholar 

  14. LS-DYNA. Keyword User's manual. Volume II material models version R7. Livermore software technology corporation, Livermore

    Google Scholar 

  15. Tabiei A, Ivanov I (2002) Computational micro-mechanical model of flexible woven fabric for finite element impact simulation. Int J Numer Meth Engng 53:1259–1276. https://doi.org/10.1002/NME.321

    Article  MATH  Google Scholar 

  16. Shahkarami A, Vaziri R (2006) An efficient shell element based approach to modeling the impact response of fabrics. In: 9th international LS-DYNA users conference: proceedings of the international users conference, Dearborn, 4–6 June 2006

    Google Scholar 

  17. Reddy JN (2003) Mechanics of laminated composite plates and shells: theory and analysis. 2nd Ed. Boca Raton

    Google Scholar 

  18. Kaledin VO, Budadin ON, Gilyova A Ye, Kozelskaya SO (2017) Modeling of thermomechanical processes in woven composite material at blow by the striking element.: IOP Conf Ser J Phys 894:012019. https://doi.org/10.1088/1742-6596/894/1/012019

  19. Kaledin VO, Gileva AE, Budadin ON, Kozel’skaya SO (2018) Quality control of armor fabric by modeling thermomechanical processes under projectile impact. Russ J Nondest Test 54(5):363–371

    Article  Google Scholar 

  20. Setoodeh Sh (2005) Optimal design of variable-stiffness fiber-reinforced composites using cellular automata (Master Thesis), Shiraz University

    Google Scholar 

  21. Sevost’yanov PA, Monakhov VI, Samoilova TA, Dasyuk PE (2016) Modeling fabric sample elongation and breaking dynamics, taking account of random variations and changes in fabric structure and interaction of yarns. Fibre Chem 47(6):501–504

    Google Scholar 

  22. Smolin A, Shilko EV, Buyakova SP, Psakhie S et al (2015) Modeling mechanical behaviors of composites with various ratios of matrix–inclusion properties using movable cellular automaton method. Def Technol 11:8–34

    Google Scholar 

  23. Sueki S, Soranakom C, Mobasher B, Peled A (2007) Pullout–slip response of fabrics embedded in a cement paste matrix. J Mater Civ Eng 19(9):718–727

    Article  Google Scholar 

  24. Gu B (2003) Analytical modeling for the ballistic perforation of planar plain-woven fabric target by projectile. Compos B: Eng 34:361–371

    Article  Google Scholar 

  25. Guiberteau F, Padture NP, Lawn BR (1994) Effect of grain size on hertzian contact damage in alumina. J Am Cerum Soc 77:1825–1831

    Article  Google Scholar 

  26. Ha-Minh C, Imad A, Boussu F, Kanit T (2013) On analytical modelling to predict of the ballistic impact behaviour of textile multi-layer woven fabric. Compos Struct 99:462–476

    Article  Google Scholar 

  27. Jacobs MJN, Van Dingenen JLJ (2001) Ballistic protection mechanisms in personal armor J Mater Sci 36:3137–3142

    Google Scholar 

  28. Kobylkin IF, Selivanov VV (2014) Materialy i struktury legkoj bronezashchity (Materials and structures of light armor). Bauman MSTU, Moscow

    Google Scholar 

  29. Orlov MYu, Glazyrin VP, Orlov YuN (2020) Research of the projectile's layout for penetration capability through metal targets. J Phys Conf Ser 1709 012001. https://doi.org/10.1088/1742-6596/1709/1/012001

Download references

Acknowledgements

The work was carried out within the framework of the State mission of the Ministry of Science and Higher Education of the Russian Federation (theme 0721-2020-0036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Belov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaledin, V.O., Paulzen, A.E., Belov, S.V., Ponomarev, S.V. (2023). “Algozit” Programming Environment for Continuum Mechanics Problem-Solving. In: Orlov, M.Y., Visakh P. M. (eds) Behavior of Materials under Impact, Explosion, High Pressures and Dynamic Strain Rates. Advanced Structured Materials, vol 176. Springer, Cham. https://doi.org/10.1007/978-3-031-17073-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17073-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17072-0

  • Online ISBN: 978-3-031-17073-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics