Skip to main content

BloHeS Consensus Mechanism – Introduction and Performance Evaluation

  • Conference paper
  • First Online:
Future Access Enablers for Ubiquitous and Intelligent Infrastructures (FABULOUS 2022)

Abstract

Consensus mechanisms are important instruments of Blockchain based systems. The consensus mechanism performance depends on its capability to balance the security, scalability and decentralization of the network. The Proof-of-work and Proof-of-stake are the most accepted consensus mechanisms. However, despite the highest level of protection they are struggling to scale with the increased transaction demand. Comparably, the Tendermint consensus mechanism has better scaling property, but decreased protection capabilities. This paper introduces the BloHeS consensus mechanism that is based on the Tendermint consensus mechanism. The BloHeS is capable to reduce the message complexity, still keeping the protection capabilities on par with the Tendermint consensus mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Del Monte, G., Pennino, D., Pizzonia, M.: Scaling blockchains without giving up decentralization and security. arXiv preprint arXiv:2005.06665 (2020)

  2. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)

    Google Scholar 

  3. Buterin, V., et al.: Ethereum white paper: a next-generation smart contract and decentralized application platform. Ethereum (2014). http://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf

  4. Debus, J.: Consensus methods in blockchain systems. Frankfurt School of Finance & Management, Blockchain Center, Technical report, pp. 1–58 (2017)

    Google Scholar 

  5. Nguyen, C.T., Hoang, D.T., Nguyen, D.N., Niyato, D., Nguyen, H.T., Dutkiewicz, E.: Proof-of-stake consensus mechanisms for future blockchain networks: fundamentals, applications and opportunities. IEEE Access 7, 85727–85745 (2019)

    Article  Google Scholar 

  6. Castro, M., Liskov, B., et al.: Practical Byzantine fault tolerance. In: OSDI, pp. 173–186 (1999)

    Google Scholar 

  7. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans. Programm. Lang. Syst. (TOPLAS) 4, 382–401 (1982)

    Article  Google Scholar 

  8. Kwon, J.: Tendermint: Consensus without mining. Draft v. 0.6, fall. 1 (2014)

    Google Scholar 

  9. He, J., Wang, G., Zhang, G., Zhang, J.: Consensus mechanism design based on structured directed acyclic graphs. Blockchain Res. Appl 2, 100011–100040 (2021)

    Google Scholar 

  10. Popov, S.: The tangle. https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf

  11. Baird, L.: The Swirlds hashgraph consensus algorithm: fair, fast, Byzantine fault tolerance. Swirlds Tech Reports SWIRLDS-TR-2016-01, Technical report (2016)

    Google Scholar 

  12. Karamachoski, J., Gavrilovska, L.: Extended performance evaluation of the tendermint protocol. In: ETAI 2021 (2021)

    Google Scholar 

  13. Buchman, E.: Tendermint: Byzantine fault tolerance in the age of blockchains (2016). https://allquantor.at/blockchainbib/pdf/buchman2016tendermint.pdf

  14. Dib, O., Brousmiche, K.-L., Durand, A., Thea, E., Hamida, E.B.: Consortium blockchains: overview, applications and challenges. Int. J. Adv. Telecommun. 11 (2018)

    Google Scholar 

  15. Amoussou-Guenou, Y., Del Pozzo, A., Potop-Butucaru, M., Tucci-Piergiovanni, S.: Dissecting tendermint. In: International Conference on Networked Systems, pp. 166–182 (2019)

    Google Scholar 

  16. Kwon, J., Buchman, E.: Cosmos - A Network of Distributed Ledgers. Cosmos, dated, pp. 1–41 (2018)

    Google Scholar 

  17. Arora, S.K., Kumar, G., Kim, T.: Blockchain based trust model using tendermint in vehicular adhoc networks. Appl. Sci. 11, 1998 (2021)

    Article  Google Scholar 

  18. Karamachoski, J., Gavrilovska, L.: An optimal storage organization for blockchain-based public healthcare system. J. Electr. Eng. Inf. Technol. 5, 143–152 (2020)

    Google Scholar 

  19. Miletic, L.: Formal and simulation analysis of data dissemination algorithms in a blockchain network (2018)

    Google Scholar 

  20. MATLAB website. https://www.mathworks.com/products/matlab.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jovan Karamachoski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karamachoski, J., Gavrilovska, L. (2022). BloHeS Consensus Mechanism – Introduction and Performance Evaluation. In: Perakovic, D., Knapcikova, L. (eds) Future Access Enablers for Ubiquitous and Intelligent Infrastructures. FABULOUS 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 445. Springer, Cham. https://doi.org/10.1007/978-3-031-15101-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15101-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15100-2

  • Online ISBN: 978-3-031-15101-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics