Skip to main content

Decarbonization of District Heating. Waste Heat Streams and Solar District Heating

  • Chapter
  • First Online:
Handbook of Low Temperature District Heating

Abstract

In this Chapter renewable energy technologies are introduced, which play a key-role in the decarbonization of district heating networks. Largescale technologies as well as technologies deployed at building level are considered. Specific attention is paid to waste heat recovery and solar thermal systems. Common technology solutions, country specific factors and competing technologies are outlined. With increasing level of sophistication in building-level heating & cooling services, de-carbonization technologies at that scale are studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sometimes also as Full Load Equivalent Operational Hours.

References

  1. Lygnerud, K., & Werner, S. (2017). Risk of industrial heat recovery in district heating systems. Energy Procedia, 116, 152–157. https://doi.org/10.1016/j.egypro.2017.05.063. ISSN 1876-6102

  2. Vesterlund, M., Toffolo, A., & Dahl, J. (2017). Optimization of multi-source complex district heating network, a case study. Energy, 126, 53–63. https://doi.org/10.1016/j.energy.2017.03.018. ISSN 0360–5442

  3. Heat Roadmap Europe. (2022). Heating and cooling energy demands. https://heatroadmap.eu/heating-and-cooling-energy-demand-profiles/ (2022/03/24)

  4. SEENERGIES. (2022). Pan European Thermal atlas. https://www.seenergies.eu/peta5/ (2022/03/24)

  5. PITAGORAS. Sustainable urban planning with innovative and low energy thermal and power generation from residual and renewable sources, Deliverable 2.16. Publishable Report of The Two Demonstration Plants. https://pitagorasproject.eu

  6. Arroiabe, P. F., Iñarga, J. I., de Arteche Botas, M. G., Pérez, S. L., Astigarraga, E. U., Unamuno, I., Martinez-Aguirre, M., & Bou-Ali, M. M. (2019). Design of a radiative heat recuperator for steel processes. ICOME

    Google Scholar 

  7. Iturralde, J., de Arteche, M. G., Aguirre, P., Bárcena, J., López, S., Ubieta, E., Arroiabe, P. F., Bou-Ali, M. M., & Unamuno, I. (2019). Radiant waste heat recovery from steelmaking and glass industry E3S Web Conf. (vol. 116, p. 00029). https://doi.org/10.1051/e3sconf/201911600029

  8. Pérez, S. L., López, S. H., Astigarraga, E. U., del Hoyo Arce, I., de Arteche Botas, M. G., Iñarga, J. I., Txapartegi, P. F. A., Bou-Ali, M. M., & Iriondo, I. U. (2021). Design of a radiant heat capturing device for steel mills. Journal of Sustainable Development of Energy, Water and Environment Systems, 9(3), 1080365. https://doi.org/10.13044/j.sdewes.d8.0365

  9. Lowe, R. (2011). Combined heat and power considered as a virtual steam cycle heat pump. Energy Policy, 39(9), 5528–5534. https://doi.org/10.1016/j.enpol.2011.05.007. ISSN 0301-4215

  10. Tomic, P., Dobric, Z., & Studovic, M. (2000). District heating system of Belgrade supplied from the co-generation plant ‘Obrenovac’ (Yugoslavia). Heating and co-generative systems in urban settlements and industry symposium proceedings–book 1, (p. 314). Macedonia: The Former Yugoslav Republic of: ZEMAK—Association of Power Engineers of Macedonia. Retrieved from https://inis.iaea.org/search/search.aspx?orig_q=RN:33020154 (2021/08/06)

  11. Savickas, R. (2020). Belgrade energy strategy for the period 2025–2040. Retrieved from https://orbit.dtu.dk/en/publications/belgrade-energy-strategy-for-the-period-2025-2040 (2021/08/06)

  12. Wahlroos, M., Pärssinen, M., Manner, J., & Syri, S. (2017). Utilizing data center waste heat in district heating—impacts on energy efficiency and prospects for low-temperature district heating networks. Energy, 140(Part 1), 1228–1238. https://doi.org/10.1016/j.energy.2017.08.078. ISSN 0360-5442

  13. Davies, G. F., Maidment, G. G., & Tozer, R. M. (2016). Using data centres for combined heating and cooling: An investigation for London. Applied Thermal Engineering, 94, 296–304. https://doi.org/10.1016/j.applthermaleng.2015.09.111. ISSN 1359–4311

  14. Ehsanul, K. et al. (2017). Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews, 82(1), 894–900. https://doi.org/10.1016/j.rser.2017.09.094

  15. Weiss, W., & Spörk-Dür, M. Solar heat worldwide, IEA SHC, edition 2021. https://www.iea-shc.org/solar-heat-worldwide (Retrieved 2022/05/04)

  16. Perez-Mora, N. et al. (2017). Solar district heating and cooling: A review. International Journal of Energy Research, 1–23. https://doi.org/10.1002/er.3888

  17. Jodeiri, A. M., et al. (2022). Renewable and Sustainable Energy Reviews, 158, 112156. https://doi.org/10.1016/j.rser.2022.112156

    Article  Google Scholar 

  18. IEA SHC Task 55. Task Annex. https://task55.iea-shc.org/documents (Retrieved 2022/05/04)

  19. Sibbitt, B. et al. (2012). The performance of a high solar fraction seasonal storage district heating system-five years of operation. Energy Procedia, 30, 856–865. https://doi.org/10.1016/j.egypro.2012.11.097

  20. Tschopp, D., et al. (2020). Large-scale solar thermal systems in leading countries: A review and comparative study of Denmark China, Germany and Austria. Applied Energy, 270, 114997. https://doi.org/10.1016/j.apenergy.2020.114997

    Article  Google Scholar 

  21. Leoni, P., Schmidt, R.-R., Geyer, R., & Reiter, P. (2020). SWOT analysis of ST integration in DHC systems. IEA-SHC TECH Sheet 55.A.2.2. http://files.iea-shc.org/public/ab5/a-d2-2-swot-st-dh.pdf (Retrieved 2022/05/04)

  22. Lumbreras, M., & Garay, R. (2020). Energy & economic assessment of façade-integrated solar thermal systems combined with ultra-low temperature district-heating. Renewable Energy, 159, 1000–1014. https://doi.org/10.1016/j.renene.2020.06.019. ISSN 0960-1481

  23. Lumbreras, M., Garay, R. & Koldobika, M. (2018). Unglazed solar thermal systems for building integration, coupled with district heating systems. Conceptual definition, cost and performance assessment. Journal of Facade Design and Engineering, 6(2), 119–131. https://doi.org/10.7480/jfde.2018.2.2085. ISSN 2213–3038

  24. RELaTED Project. https://cordis.europa.eu/project/id/768567

  25. EnergyLab Nordhavn. (2019). D4.4b. Heat pump installations: air/water or water/water. http://www.energylabnordhavn.com/deliverables.html

  26. Zhu, T., Ommen, T., Meesenburg, W., Thorsen, J. E., & Elmegaard, B. (2021). Steady state behavior of a booster heat pump for hot water supply in ultra-low temperature district heating network. Energy, 237, 121528. https://doi.org/10.1016/j.energy.2021.121528. ISSN 0360-5442

  27. Lumbreras Mugaguren, M., Garay Martínez, R., Sánchez Zabala, V., Korsholmstergaard, K., & Caramaschi, M. (2019). Triple function substation and high-efficiency micro booster heat pump for ultra low temperature district heating. IOP Conference Series: Materials Science and Engineering, 609(5), 052008. https://doi.org/10.1088/1757-899X/609/5/052008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaela Meir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 TECNALIA

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garay-Martinez, R., Meir, M. (2022). Decarbonization of District Heating. Waste Heat Streams and Solar District Heating. In: Garay-Martinez, R., Garrido-Marijuan, A. (eds) Handbook of Low Temperature District Heating. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-10410-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10410-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10409-1

  • Online ISBN: 978-3-031-10410-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics